RTCSA 2012

Performance Comparisons of Parallel Power Flow Solvers on GPU System

<u>Chunhui Guo¹, Baochen Jiang¹, Hao Yuan¹,</u> Zhiqiang Yang¹, Li Wang², Shangping Ren²

¹Shandong University at Weihai, China ²Illinois Institute of Technology, USA

Outline

Performance Evaluation

Power Flow

Di 1901 Prove UNIVERS

Describe steady state of a power system

Importance

- optimize real-time control of running power systems
- provide essential information for designing new power systems
- provide basics for other power system analysis

Calculation

- involve thousands of equations
- * Goal
 - increase computation speed

Parallel Computing

Common approaches

- multi-threading
- parallel machines
- distributed systems

Disadvantages of these approaches

- special hardware support
- high cost
- Iimited speed improvement

Parallel Computing on GPU

GPU (Graphics Processing Unit)

- high computing efficiency
- Iow price
- widely used in many fields
- CUDA (Compute Unified Device Architecture)
- Current parallel power solvers on GPU
 - Newton method, Jacobi method
- What's missing
 - comparison among different parallel solvers
- Our work
 - parallelize and compare three common power flow solvers

Power Flow Model

For a power system with *n* independent buses, the power equations of bus *i* are:

$$P_{i} = \sum_{k=1}^{n} \left| V_{i} V_{k} Y_{ik} \right| \cos\left(\theta_{ik} + \delta_{k} + \delta_{i}\right)$$
(1)

$$Q_i = -\sum_{k=1}^n |V_i V_k Y_{ik}| \sin(\theta_{ik} + \delta_k + \delta_i)$$
(2)

- i, k:bus number
- P :real power
- Q :reactive power
- |V| :voltage magnitude
- δ :voltage angle
- $|Y_{ik}|$:magnitude of admittance between bus *i* and bus *k*
- θ_{ik} :angle of admittance between bus *i* and bus *k*

Power Flow Model

$$P_{i} = \sum_{k=1}^{n} \left| V_{i} V_{k} Y_{ik} \right| \cos\left(\theta_{ik} + \delta_{k} + \delta_{i}\right)$$
(1)

$$Q_i = -\sum_{k=1}^n |V_i V_k Y_{ik}| \sin(\theta_{ik} + \delta_k + \delta_i)$$
(2)

Equation (1) and (2)

- non-linear
- both $|Y_{ik}|$ and θ_{ik} are known
- in P , Q , |V| and δ , two variables are known
- solvable

In order to calculate power flow, we need to solve the non-linear equations which consist of equation (1) and (2).

Power Flow Solver

Calculation method

- Gauss-Seidel solver
- Newton-Raphson solver
- P-Q decoupled solver

Calculate steps

Power Flow Solver

- Gauss-Seidel solver
 - use the latest iteration value

Newton-Raphson solver

- transform non-linear equations to linear equations by Taylor series
- coefficient matrix of linear equations (Jacobian matrix) needs to be recalculated in each iteration
- **polar form** and rectangular form
- P-Q decoupled solver
 - simplified version of Newton-Raphson solver
 - use imaginary part of bus admittance to replace Jacobian matrix
 - coefficient matrix of linear equations remains unchanged

Speedup Analysis

- We use the multiplication number to estimate the computation cost and does not consider the communication cost between CPU and GPU.
- The speedup is sequential computation cost divided by parallel computation cost.
- For a power system with *n* buses, theoretical speedups are

Power Flow Solver	Speedup
Gauss-Seidel Solver	0.2n
Newton-Raphson Solver	2n
P-Q Decoupled Solver	0.4n

Parallelization

Two problems

- Which operations to parallelize ?
- How to parallelize ?

Parallelization operations

- bus admittance matrix computation
- iteration process

parallelization steps

NAME OF COMPANY OF COM

Gauss-Seidel Iteration

Gauss-Seidel iterative format

$$V_{i}^{(k+1)} = \frac{1}{Y_{ii}} \left(\frac{P_{i} - jQ_{i}}{V_{i}^{(k)}} - \sum_{j=1}^{i-1} Y_{ij}V_{j}^{(k+1)} - \sum_{j=i+1}^{n} Y_{ij}V_{j}^{(k)} \right)$$
(3)
$$Q_{i}^{(k)} = -\operatorname{Im}[V_{i}^{(k)}(\sum_{j=1}^{i-1} Y_{ij}V_{j}^{(k+1)} + \sum_{j=i}^{n} Y_{ij}V_{j}^{(k)})]$$
(4)

Parallelization operations

summation operations in equation (3) and (4)

(5)

Newton-Raphson Iteration

Parallelization operations

- Jacobian matrix computation
- Inear equations solver

Jacobian matrix computation

$$J = \begin{bmatrix} H & N \\ K & L \end{bmatrix}$$

P-Q Decoupled Iteration

Parallelization operations

Inear equations solver

SHARE DO NG UNITED

Linear Equations Solver

Gaussian elimination method

- forward elimination
- back substitution

Augmented matrix

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} & a_{1,n+1} \\ \vdots & \ddots & & \vdots & \vdots \\ a_{k1} & & a_{kk} & & a_{kn} & a_{k,n+1} \\ \vdots & & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nk} & \cdots & a_{nn} & a_{n,n+1} \end{bmatrix}$$

(6)

(7)

***** *k*th forward elimination step $a_{kj} = a_{kj} / a_{kk}, (j = k + 1 \sim n + 1)$

$$a_{ij} = a_{ij} - a_{ik} * a_{kj}, (i = k + 1 \sim n, j = k + 1 \sim n + 1)$$
(8)

Gaussian Forward Elimination (1)

Kernel to process equation (7)

$$a_{kj} = a_{kj} / a_{kk}, (j = k + 1 \sim n + 1)$$
(7)

Algorithm 1 GAUSS ELIMINATION CUDA KERNEL A

- Input: Augmented matrix in GPU memory: augMatrixGPU, number of rows in matrix augMatrixGPU: n, the Gauss forward elimination step: k.
 - 1: $i \leftarrow blockIdx.x \times blockDim.x + threadIdx.x$
 - 2: $j \leftarrow blockIdx.y * blockDim.y + threadIdx.y$
 - 3: if i == k and j > k and j < n + 1 and $augMatrixGPU[k \times (n + 1) + k] \neq 0.0$ then
 - 4: $augMatrixGPU[k \times (n + 1) + j]$ $\leftarrow augMatrixGPU[k \times (n + 1) + j]/$ $augMatrixGPU[k \times (n + 1) + k]$
 - 5: end if

Gaussian Forward Elimination (2)

Kernel to process equation (8)

$$a_{ij} = a_{ij} - a_{ik} * a_{kj}, (i = k + 1 \sim n, j = k + 1 \sim n + 1)$$
(8)

Algorithm 2 GAUSS ELIMINATION CUDA KERNEL B

- Input: Augmented matrix in GPU memory: augMatrixGPU, number of rows in matrix augMatrixGPU: n, the Gauss forward elimination step: k.
 - 1: $i \leftarrow blockIdx.x * blockDim.x + threadIdx.x$
 - 2: $j \leftarrow blockIdx.y * blockDim.y + threadIdx.y$
 - 3: if i > k and i < n and j > k and j < n + 1 and $augMatrixGPU[k \times (n + 1) + k] \neq 0.0$ then
 - 4: $augMatrixGPU[i \times (n + 1) + j] \leftarrow augMatrixGPU[i \times (n + 1) + j] augMatrixGPU[i \times (n + 1) + j] + k] \times augMatrixGPU[k \times (n + 1) + j]$
 - 5: end if

Gaussian Forward Elimination (3)

Algorithm 3 GAUSS FORWARD ELIMINATION

- Input: Augmented matrix in GPU memory: *augmentMatrix*, number of rows in matrix *augmentMatrix*: n.
- 1: $cudaMalloc((void^{**})\&aguMatrixGPU, sizeof(float) \times n \times (n+1))$
- 2: $cudaMemcpy2D(aguMatrixGPU, sizeof(float) \times$
 - (n + 1), aguMatrix, sizeof(float) \times
 - (n + 1), $sizeof(float) \times (n + 1)$, n, cudaMemcpyHostToDevice)
- 3: dim3 blockDim(22,22)
- 4: dim3 gridDim((n+blockDim.x-1)/blockDim.x, (n+1+blockDim.y-1)/blockDim.y)
- 5: for $k \leftarrow 0$ to n-1 do
- 6: GaussKernelA <<< gridDim, blockDim >>> (aguMatrixGPU, n, k);
- 7: GaussKernelB <<< gridDim, blockDim >>> (aguMatrixGPU, n, k);
- 8: end for
- 9: $cudaMemcpy2D(aguMatrix, sizeof(float) \times$
 - (n + 1), aguMatrixGPU, sizeof(float) \times
 - $(n + 1), sizeof(float) \times (n + 1)$, n, cudaMemcpyDeviceToHost)
- 10: cudaFree(aguMatrixGPU)

ą n р r O С e S S

Performance Evaluation

Experiment platform

- host: Intel i3-2100 CPU(3.10GHz) & 2G RAM
- device: Nvidia GeForce GTS450 GPU(192 CUDA cores & 1G RAM)
- software: Windows 7, CUDA 4.0

Experiment power systems

System	Bus Count	Branch Count
IEEE9	9	9
IEEE30	30	41
IEEE118	118	186
IEEE300	300	357
Shandong	974	1449

Experiment Result (1)

Gauss-Seidel solver

System	CPU Runtime (s)	GPU Runtime (s)	Speedup
IEEE9	0.0001	0.3276	0.0003
IEEE30	0.002	0.7051	0.0028
IEEE118	0.023	3.2963	0.007
IEEE300	0.3428	7.2992	0.047
Shandong	1.2147	19.603	0.062

Experiment Result (2)

Newton-Raphson solver

System	CPU Runtime (s)	GPU Runtime (s)	Speedup
IEEE9	0.0015	0.0094	0.1596
IEEE30	0.0098	0.0094	1.0426
IEEE118	0.3132	0.1997	1.5684
IEEE300	4.689	2.6848	1.7465
Shandong	583.831	10.881	53.656

Experiment Result (3)

P-Q decoupled solver

System	CPU Runtime (s)	GPU Runtime (s)	Speedup
IEEE9	0.0047	0.0047	1.0
IEEE30	0.0081	0.0125	0.648
IEEE118	0.1137	0.117	0.9718
IEEE300	1.5107	1.1606	1.3017
Shandong	148.974	5.5068	27.0527

Result Analysis

Conclusion

LI SUL LINE OF

Parallelize three power flow solvers on GPU

- bus admittance matrix computation
- iteration process
- Compare speedup of three parallel power flow solvers
 - Newton-Raphson solver: best
 - P-Q decoupled solver: middle
 - Gauss-Seidel solver: worst

Future Work

Improve speedup
Reduce computation time
Study different applications

Chunhui Guo chunhui.guo@hotmail.com