RTCSA 2012

Performance Comparisons of Parallel
Power Flow Solvers on GPU System

Chunhui Guol, Baochen Jiang?!, Hao Yuan?,

Zhigiang Yang?!, Li Wang?, Shangping Ren?

IShandong University at Weihai, China
?|llinois Institute of Technology, USA

N\ ——

2 3
2}
n "'ooNG uu\“é}

Q Background
e Power Flow Model

@ Power Flow Solver

@ Parallelization

@ Performance Evaluation
@ Conclusion & Future Work

R N\WV)/7Z” % =

T

*» Describe steady state of a power system

*» Importance
= optimize real-time control of running power systems

= provide essential information for designing new power
systems

= provide basics for other power system analysis

» Calculation

= involve thousands of equations
“* Goal

= Increase computation speed

BN\
. Parallel Computing

*» Common approaches
= multi-threading
= parallel machines
= distributed systems

*» Disadvantages of these approaches
= special hardware support
= high cost
= |imited speed improvement

—\\\\\ Wy ————
— Parallel Computing on GPU

*» GPU (Graphics Processing Unit)
= high computing efficiency
= low price
= widely used in many fields
= CUDA (Compute Unified Device Architecture)

“* Current parallel power solvers on GPU
= Newton method, Jacobi method

< What's missing
= comparison among different parallel solvers

¢ Our work
= parallelize and compare three common power flow solvers

/ Vv)
(ﬂ

III'IIIIIIIIIIIIIIIIIIIIIIIIIIF§§§§Q“3””/”?ééfﬁ/’r;
— Power Flow Model

For a power system with n independent buses, the
power equations of bus I are:

P.o=> WVJY,lcos(8, + 6, +5,) (1)
k=1
= Z
=7, k:bus number
= p real power
= ¢ :reactive power
/| :voltage magnitude
= 5§ :voltage angle
r;.l:magnitude of admittance between bus i1 and bus k
= 0, :angle of admittance between bus | and bus k

(2)

SO wﬂ////j

—. Power Flow Model

P = V.|cos(0, + 6, +6,) (1)

1

k=1

£ (2)
**Equation (1) and (2)

= non-linear
= both|/«|and 6,, are known

ik

= solvable

In order to calculate power flow, we need to
solve the non-linear equations which consist of

equation (1) and (2).

=
Power Flow Solver

¢ Calculation method
= Gauss-Seidel solver
= Newton-Raphson solver
= P-Q decoupled solver

* Calculate steps

e N

: rearrange admittance
aoy L buses { matrix

output iteration {initialization

—\\\\W Wp————
= Power Flow Solver —

+» Gauss-Seidel solver
= use the latest iteration value

“* Newton-Raphson solver

= transform non-linear equations to linear equations by Taylor
series

= coefficient matrix of linear equations (Jacobian matrix) needs to
be recalculated in each iteration

= polar form and rectangular form
** P-Q decoupled solver
= simplified version of Newton-Raphson solver

= use imaginary part of bus admittance to replace Jacobian matrix
= coefficient matrix of linear equations remains unchanged

N\WZ— (e

—. Speedup Analysi

“* We use the multiplication number to estimate the
computation cost and does not consider the
communication cost between CPU and GPU.

“* The speedup is sequential computation cost divided by
parallel computation cost.

“ For a power system with n buses, theoretical speedups
are

Gauss-Seidel Solver 0.2n
Newton-Raphson Solver 2N
P-Q Decoupled Solver 0.4n

“» Two problems
= Which operations to parallelize ?
= How to parallelize ?

*» Parallelization operations
= pus admittance matrix computation
= |teration process

» parallelization steps

P N '

allocate copy original
GPU data from
memory CPU to GPU
N ™ N
release GPU Cgaﬂé ﬁg#]lt call kernel to
memory GPU to CPU process dataJ
S

‘\\\\\\\\ Wﬂ/]//j

—. Gauss-Seidel Iteration

* Gauss-Seidel iterative format

V(k +1) _ 1 P JQ iYuvj(kﬂ) Z YIJVJ(k)) (3)
Yii V(k) j=1 j=i+l
QW = Im[\/(k)(z AV +ZY,JV,("))] (4)

*» Parallelization operations
= summation operations in equation (3) and (4)

B e r———

Newton-Raphson Iteration

*» Parallelization operations
= Jacobian matrix computation
= |linear equations solver

*»Jacobian matrix computation
‘HON
J = (5)

—‘\\z\\\\ ’”’//% ——
— P-Q Decoupled Iteration

*» Parallelization operations
= |linear equations solver

‘\\\\\\\\ Wﬂ/]//j

—. Linear Equations Solver

+*» Gaussian elimination method
= forward elimination
= pack substitution

“* Augmented matrix

Ay o Ay v, gy
6
A= A A 2 T ()
an1 ’ ank o ann an n+l |

*» kth forward elimination step
8, =8,/ ay,(j=k+1~n+1) (7)

a; =a; —a *a,,(i=k+1~n, j=k+1~n+1) (8)

“*Kernel to process equation (7)
8 =8y /8y, (I=k+1~n+l) L

Algorithm 1 GAUSS ELIMINATION CUDA KERNEL A

Input: Augmented matrix in GPU memory:
augMatrizGPU, number of rows 1n matrx
augMatrizGPU: n, the Gauss forward elimination
step: k.

1: 2 & blockldx.x x blockDim.x + threadldz.x

2: 7 + blockldz.y * blockDim.y + threadldz.y

3:23if i == k and 7 > k£ and 7 < n+ 1 and

augMatrizGPU [k x (n+ 1) + k] # 0.0 then

4 augMatrizGPUE x (n + 1) + j
- augMatrizGPUk x (n + 1) + 3|/
augMatrizGPU [k x (n + 1) + k]

5: end if

“*Kernel to process equation (8)

a; =a; —a *a,,(i=k+1~n, j=k+1~n+1) (8)

Algorithm 2 GAUSS ELIMINATION CUDA KERNEL B

Input: Augmented martrix in GPU memory:

l:

augMatrizGPU, number of rows 1In matrix
augMatrizGPU: n, the Gauss forward elimination
step: k.

1 < blockIdx.x = blockDim.x + threadldz.x

2: 7 + blockldx.y * blockDim.y + threadl dx.y

3:

if i > kandi < mand 5 > kand 5 < n+ 1 and

augMatrizGPU [k x (n+ 1) + k| # 0.0 then
augMatrizGPU[i x (n + 1) + 7] —
augMatrizGPU[: x (n + 1) + j]—
augM atrizGPU i X (n + 1) +
k| xaugM atrizGPU [k x (n + 1) + j]

- end if

NONDOO=T IS—O e

Algorithm 3 GAUSS FORWARD ELIMINATION

Input: Augmented matrix in GPU memory:

10:

augmentMatriz, number of rows iIn matrix
augment M atriz: n.

: cudaMalloc((void**)&aguMptrizGPU,

sizeof(float) x n x (n + 1))
cudaMemepy2D(aguMatrizGPU, sizeof(float) x
(n + 1), aguMatriz, sizeof(float) x
(n + 1), sizeof(float) x (n + 1),
n, cudaM emepyH ostToDevice)

. dim3 block Dim/(22,22)

dim3 gridDim((n+blockDim.x—1) /block Dim.x, (n+
1 + blockDim.y — 1) /block Dim.y)

- fork—0Oton—1do

GaussKernelA <<< gridDim,blockDim >>>
(aguMatrizGPU,n, k);
GaussKernel B <<< gridDim,blockDim >>>
(aguMatrizGPU,n, k);
end for
cudaMemepy2D(aguM atriz, sizeof(float) x
(n + 1), aguMatrizGPU, sizeof(float) x
(n + 1), sizeof (float) x (mn + 1)
, 1, cudaM emepyDeviceT oH ost)
cudaFree(aguM atrizG PU)

— Performance Evaluatlon —

“* Experiment platform
= host: Intel 13-2100 CPU(3.10GHz) & 2G RAM

= device: Nvidia GeForce GTS450 GPU(192 CUDA
cores & 1G RAM)

= software: Windows 7, CUDA 4.0
“* Experiment power systems

IEEES 9 9

IEEE30 30 41
IEEE118 118 186
IEEE300 300 357

Shandong 974 1449

—\\\\W’”W T
— Experiment Result (1)

+» Gauss-Seldel solver

IEEES 0.0001 0.3276 0.0003
IEEE30 0.002 0.7051 0.0028
IEEE118 0.023 3.2963 0.007
IEEE300 0.3428 7.2992 0.047

Shandong 1.2147 19.603 0.062

—\\\\W’”W T
— Experiment Result (2)

“* Newton-Raphson solver

IEEEQ 0.0015 0.0094 0.1596
IEEE30 0.0098 0.0094 1.0426
IEEE118 0.3132 0.1997 1.5684
IEEE300 4.689 2.6848 1.7465

Shandong 583.831 10.881 53.656

‘@@

—\\\\ W
— Experiment Result (3) —

**P-Q decoupled solver

IEEE9 0.0047 0.0047 1.0
IEEE30 0.0081 0.0125 0.648
IEEE118 0.1137 0.117 0.9718
IEEE300 1.5107 1.1606 1.3017

Shandong 148.974 5.5068 27.0527

60

10

0

L] L L)

L L

— = - Gauss-Seidel solver
—#— Newton-Raphson so

—& — P-Q decoupled solver

lver

e — —

| - - 5 ol

Ll

L

=l 55

L

—

ke

100 200 300 400 500 60O
System Size

700

800

300

1000

—\a\\\f\ Wp————
o Conclusion —ASF4

*» Parallelize three power flow solvers on GPU
= bus admittance matrix computation
= |teration process

“» Compare speedup of three parallel power flow
solvers
= Newton-Raphson solver: best
= P-Q decoupled solver: middle
= Gauss-Seidel solver: worst

‘\\\\\\\\ Wﬂ/]//j

—. Future Work

“* Improve speedup
** Reduce computation time
*» Study different applications

S
”’ LI

Chunhui Guo chunhui.guo@hotmail.com

