
Transforming Medical Best Practice Guidelines to
Executable and Verifiable Statechart Models

Chunhui Guo

Chunhui Guo1, Shangping Ren1, Yu Jiang2, Po-Liang Wu2, Lui Sha2, and Richard Berlin2,3

Email: cguo13@hawk.iit.edu, ren@iit.edu, {jy1989, wu87, lrs}@illinois.edu,
Richard.Berlin@carle.com

1Illinois Institute of Technology
2University of Illinois at Urbana-Champaign

3Carle Foundation Hospital

ICCPS
April 14, 2016

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 1 / 44

Outline

1 Introduction

2 Transforming Yakindu Statechart to UPPAAL Timed Automata

3 Trace Failed UPPAAL Properties back to Yakindu Statecharts

4 Cardiac Arrest Case Study

5 Conclusion

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 2 / 44

Outline

1 Introduction

2 Transforming Yakindu Statechart to UPPAAL Timed Automata

3 Trace Failed UPPAAL Properties back to Yakindu Statecharts

4 Cardiac Arrest Case Study

5 Conclusion

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 3 / 44

Medical Guidelines

Medical best practice guidelines play an important role in
improving effectiveness and safety of medical care.

The existing medical best practice guidelines in hospital
handbooks are often lengthy and difficult for medical staff to
remember and apply clinically.

The text-based best practice guidelines are represented and
encoded into many computer interpretable formats, such as
Asbru, GLIF, PROforma, etc.

However, those formats are not user friendly for physicians to
validate their correctness.

Furthermore, it is not easy to formally verify those formats for
life-critical medical cyber-physical systems.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 4 / 44

Statecharts

Statechart has several advantages:

have high similarity to disease models and treatment models

allow quick clinical validations with medical doctors

executable

enable rapid prototyping

widely used in modeling complex systems

However, clinical validation is often not adequate for guaranteeing the
correctness and safety of medical guideline models, and formal
verification is required.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 5 / 44

Statecharts

Statechart has several advantages:

have high similarity to disease models and treatment models

allow quick clinical validations with medical doctors

executable

enable rapid prototyping

widely used in modeling complex systems

However, clinical validation is often not adequate for guaranteeing the
correctness and safety of medical guideline models, and formal
verification is required.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 5 / 44

Guidelines to Verifiable Statecharts

We propose an approach that transforms medical best practice
guidelines to verifiable statechart models and supports both clinical
validation and formal verification.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 6 / 44

Guidelines to Verifiable Statecharts

Why choose Yakindu statechart tool to model medical best practice
guidelines?

1 The Yakindu statechart tool has a well-designed user interface
and has simulation and code generation functionality, which
enables rapid prototyping and validation with medical staff.

2 Yakindu statechart tool is an open-source tool kit, which can be
customized according to medical domain knowledge.

Why choose UPPAAL to verify guideline statecharts?

1 The structure of UPPAAL time automata and Yakindu statechart
are similar, which makes the transformation and trace back easier.

2 UPPAAL has a graphical user interface and has simulation and
counter example generation functionality, which advances model
debug.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 7 / 44

Guidelines to Verifiable Statecharts

Why choose Yakindu statechart tool to model medical best practice
guidelines?

1 The Yakindu statechart tool has a well-designed user interface
and has simulation and code generation functionality, which
enables rapid prototyping and validation with medical staff.

2 Yakindu statechart tool is an open-source tool kit, which can be
customized according to medical domain knowledge.

Why choose UPPAAL to verify guideline statecharts?

1 The structure of UPPAAL time automata and Yakindu statechart
are similar, which makes the transformation and trace back easier.

2 UPPAAL has a graphical user interface and has simulation and
counter example generation functionality, which advances model
debug.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 7 / 44

Guidelines to Verifiable Statecharts

Why not encode best practice guidelines to UPPAAL timed automata
directly?

1 According to discussion with medical staff, Yakindu is easier for
them to understand and use.

2 UPPAAL does not provide code generation functionality, therefore,
system designers must manually translate timed automata to
executable code, which is error-prone.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 8 / 44

Guidelines to Verifiable Statecharts

Due to syntax and semantics differences, to bridge the gap
between Yakindu and UPPAAL models is a challenge.

Our strategies are to build transformation rules for each element
used in the two models and use these rules as the foundation for
the transformation.

We develop the Y2U tool to transform the Yakindu statechart to
UPPAAL timed autoamta and to trace back failed medical
properties.

The tool is available on
www.cs.iit.edu/~code/software/Y2U.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 9 / 44

www.cs.iit.edu/~code/software/Y2U

Guidelines to Verifiable Statecharts

Due to syntax and semantics differences, to bridge the gap
between Yakindu and UPPAAL models is a challenge.

Our strategies are to build transformation rules for each element
used in the two models and use these rules as the foundation for
the transformation.

We develop the Y2U tool to transform the Yakindu statechart to
UPPAAL timed autoamta and to trace back failed medical
properties.

The tool is available on
www.cs.iit.edu/~code/software/Y2U.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 9 / 44

www.cs.iit.edu/~code/software/Y2U

Outline

1 Introduction

2 Transforming Yakindu Statechart to UPPAAL Timed Automata

3 Trace Failed UPPAAL Properties back to Yakindu Statecharts

4 Cardiac Arrest Case Study

5 Conclusion

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 10 / 44

Yakindu Statecharts vs UPPAAL Timed Automata

Differences between Yakindu statecharts and UPPAAL timed
automata:

1 Syntax: they have different syntactic element sets

2 Structure: Yakindu supports hierarchical structure, while UPPAAL
only supports flat structure

3 Execution Semantics: Yakindu model is deterministic and has
synchronous execution semantics while the execution of UPPAAL
model is non-deterministic and asynchronous

4 Simultaneous Events: Yakindu supports simultaneous events
while UPPAAL model does not

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 11 / 44

Transformation Principles

Principle I: must have equivalent execution semantics

Principle II: must maintain Yakindu syntactic elements when
possible

Principle III: should introduce minimal additional elements from
the Yakindu model

Principle I ensures that verification results from UPPAAL hold in the
Yakindu model.

Principle II and Principle III ensure that an execution path in UPPAAL
model can be traced back to the Yakindu model with reduced
complexity.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 12 / 44

Transformation Principles

Principle I: must have equivalent execution semantics

Principle II: must maintain Yakindu syntactic elements when
possible

Principle III: should introduce minimal additional elements from
the Yakindu model

Principle I ensures that verification results from UPPAAL hold in the
Yakindu model.

Principle II and Principle III ensure that an execution path in UPPAAL
model can be traced back to the Yakindu model with reduced
complexity.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 12 / 44

Transformation Rules

Transformation rules to bridge four type differences between Yakindu
statecharts and UPPAAL timed automata:

1 Syntax: Rule 1 to Rule 6 for basic elements of Yakindu statecharts

2 Structure: Rule 7 to flatten hierarchical structure

3 Execution Semantics: Rule 8 to Rule 9 to model determinism and
synchrony with UPPAAL

4 Simultaneous Events: Event Stack to support simultaneous
events in UPPAAL

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 13 / 44

Transformation Rules: Syntax

Rule 1: State

Rule 2: Transition

Rule 3: Data Type

Rule 4: Event

Rule 5: Timing Trigger

Rule 6: State Action

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 14 / 44

Transformation Rules: Structure

Rule 7: Composite State

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 15 / 44

Transformation Rules: Execution Semantics (1)

Yakindu statecharts execution semantics:

Internal Determinism of an Automaton: transition priority (Rule 8)

External Determinism among Automata: automaton priority (Rule
9)

Synchrony: synchronous execution (Rule 9)

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 16 / 44

Transformation Rules: Execution Semantics (2)

Rule 8: Transition Priority

Adjust transition guard to simulate transition priorities

Rule 9: Automaton Priority and Synchrony

Use the lockstep method to force synchronous execution based on
automaton priorities.

Each automaton is associated with an integer to indicate how many
steps the automaton has executed. (How to solve out-of- range
problem of step indicators?)

Add an additional guard on execution step indicator to each
transition. (How to solve deadlock problem caused by additional
guards?)

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 17 / 44

Transformation Rules: Execution Semantics (2)

Rule 8: Transition Priority

Adjust transition guard to simulate transition priorities

Rule 9: Automaton Priority and Synchrony

Use the lockstep method to force synchronous execution based on
automaton priorities.

Each automaton is associated with an integer to indicate how many
steps the automaton has executed. (How to solve out-of- range
problem of step indicators?)

Add an additional guard on execution step indicator to each
transition. (How to solve deadlock problem caused by additional
guards?)

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 17 / 44

Transformation Rules: Simultaneous Events

Event Stack

1 An automaton can raise and accept multiple events at the same
time

2 Multiple automata can accept the same event concurrently

3 An event can only be accepted by automata with lower priorities
than the automaton which raise the event

4 An event can only be accepted in the same execution time cycle in
which it is raised

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 18 / 44

Transformation Example

To transform a Yakindu model, we may combine multiple
transformation rules.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 19 / 44

Transformation Correctness

We define a Yakindu model and its associated transformed UPPAAL
model are equivalent if their observable executions are equivalent, i.e.,

1 the two models have the same execution path if the input settings
are the same

2 all variable values at each execution step of the two models are
equal

Theorem

The UPPAAL model transformed from a given Yakindu model by
applying Rule 1 to Rule 9 maintains the Yakindu model’s execution
behaviors.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 20 / 44

Transformation Correctness

We define a Yakindu model and its associated transformed UPPAAL
model are equivalent if their observable executions are equivalent, i.e.,

1 the two models have the same execution path if the input settings
are the same

2 all variable values at each execution step of the two models are
equal

Theorem

The UPPAAL model transformed from a given Yakindu model by
applying Rule 1 to Rule 9 maintains the Yakindu model’s execution
behaviors.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 20 / 44

Outline

1 Introduction

2 Transforming Yakindu Statechart to UPPAAL Timed Automata

3 Trace Failed UPPAAL Properties back to Yakindu Statecharts

4 Cardiac Arrest Case Study

5 Conclusion

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 21 / 44

Mapping between Yakindu and UPPAAL Models

Rule 4 and Rule 5 add auxiliary event automata and timer
automata to the UPPAAL model.

However, the added automata does not affect the model’s
execution behaviors.

Hence, we ignore these added events and timer automata when
tracing back execution path from UPPAAL to Yakindu.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 22 / 44

Mapping between Yakindu and UPPAAL Models

Rule 4 and Rule 5 add auxiliary event automata and timer
automata to the UPPAAL model.

However, the added automata does not affect the model’s
execution behaviors.

Hence, we ignore these added events and timer automata when
tracing back execution path from UPPAAL to Yakindu.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 22 / 44

Mapping between Yakindu and UPPAAL Models

Rule 4 and Rule 5 add auxiliary event automata and timer
automata to the UPPAAL model.

However, the added automata does not affect the model’s
execution behaviors.

Hence, we ignore these added events and timer automata when
tracing back execution path from UPPAAL to Yakindu.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 22 / 44

Mapping between Yakindu and UPPAAL Models

Theorem

Given a Yakindu model Y and its transformed UPPAAL model U (with
auxiliary event and timer automata being removed), the mapping from
UPPAAL state set SU to Yakindu state set SY is bijective.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 23 / 44

Mapping between Yakindu and UPPAAL Models

Theorem

Given a Yakindu model Y and its transformed UPPAAL model U (with
auxiliary event and timer automata being removed), the mapping from
UPPAAL transition set TU to Yakindu transition set TY is surjective, but
not injective.

Rule 6, Rule 7, and Rule 9 add transitions into TU .

However, our analysis shows that the back trace of the added
transitions can be ignored.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 24 / 44

Mapping between Yakindu and UPPAAL Models

Theorem

Given a Yakindu model Y and its transformed UPPAAL model U (with
auxiliary event and timer automata being removed), the mapping from
UPPAAL transition set TU to Yakindu transition set TY is surjective, but
not injective.

Rule 6, Rule 7, and Rule 9 add transitions into TU .

However, our analysis shows that the back trace of the added
transitions can be ignored.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 24 / 44

Mapping between Yakindu and UPPAAL Models

Theorem

Given a Yakindu model Y and its transformed UPPAAL model U (with
auxiliary event and timer automata being removed), the mapping from
UPPAAL transition set TU to Yakindu transition set TY is surjective, but
not injective.

Rule 6, Rule 7, and Rule 9 add transitions into TU .

However, our analysis shows that the back trace of the added
transitions can be ignored.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 24 / 44

Trace Back Procedure

1 Delete the additional event automata added by Rule 4 and timer
automata added by Rule 5 in the given UPPAAL execution path.

2 For each state in the path, find its corresponding state in Yakindu
model.

3 For each transition in the path, find its corresponding transition in
Yakindu model; if the corresponding transition is not found in the
Yakindu model, ignore the transition.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 25 / 44

Trace Back Example

Example
Given a Yakindu model whose transformed UPPAAL model is shown
below, verify the property A[] T2.D2 imply x > 0.

The property is not satisfied.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 26 / 44

Trace Back Example

Example
Given a Yakindu model whose transformed UPPAAL model is shown
below, verify the property A[] T2.D2 imply x > 0.

The property is not satisfied.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 26 / 44

Trace Back Example (cont.)

Example
Counter Example:
(A1,A2,A3)→ (A1,B2,A3)

true−−−→ (A1,C2,A3)→ (A1,D2,A3)

Yakindu Model Fix:
the action of transition A2→ B2 to y := 7, x := y − 6

The property still does not hold.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 27 / 44

Trace Back Example (cont.)

Example
Counter Example:
(A1,A2,A3)→ (A1,B2,A3)

true−−−→ (A1,C2,A3)→ (A1,D2,A3)

Yakindu Model Fix:
the action of transition A2→ B2 to y := 7, x := y − 6

The property still does not hold.
Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 27 / 44

Trace Back Example (cont.)

Example
Counter Example: (A1,A2,A3)→ (A1,A2,B3)→ (B1,A2,B3)→
(B1,B2,B3)

syn−−→ (C1,C2,B3)→ (C1,D2,B3)

Yakindu Model Fix:
the action of transition B1→ C1 to z := 6, x := z − 5

The property now is satisfied. In this example, two iterations are taken
to fix the errors in the model.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 28 / 44

Trace Back Example (cont.)

Example
Counter Example: (A1,A2,A3)→ (A1,A2,B3)→ (B1,A2,B3)→
(B1,B2,B3)

syn−−→ (C1,C2,B3)→ (C1,D2,B3)

Yakindu Model Fix:
the action of transition B1→ C1 to z := 6, x := z − 5

The property now is satisfied. In this example, two iterations are taken
to fix the errors in the model.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 28 / 44

Outline

1 Introduction

2 Transforming Yakindu Statechart to UPPAAL Timed Automata

3 Trace Failed UPPAAL Properties back to Yakindu Statecharts

4 Cardiac Arrest Case Study

5 Conclusion

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 29 / 44

Cardiac Arrest Case Study

A simplified cardiac arrest treatment scenario is used as a case study
to validate the proposed medical guidelines transforming approach.

Use Yakindu to model the simplified cardiac arrest treatment
procedure.

Inject an error into the Yakindu model.

Transform the model built with Yakindu to UPPAAL model with the
Y2U tool.

Verify two medical properties in the transformed UPPAAL model.
One property is satisfied, the other one is failed.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 30 / 44

Cardiac Arrest Case Study (cont.)

Trace the failed property back to the Yakindu model and modify
the Yakindu model.

Re-transform the modified Yakindu model and re-verify the two
medical properties. Both properties are satisfied.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 31 / 44

Cardiac Arrest Case Study (cont.)

Figure: Cardiac Arrest Treatment Yakindu Model

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 32 / 44

Cardiac Arrest Case Study (cont.)

Figure: Cardiac Arrest Treatment UPPAAL Model

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 33 / 44

Outline

1 Introduction

2 Transforming Yakindu Statechart to UPPAAL Timed Automata

3 Trace Failed UPPAAL Properties back to Yakindu Statecharts

4 Cardiac Arrest Case Study

5 Conclusion

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 34 / 44

Conclusion

The paper presents an approach to transform medical best
practice guidelines to executable and verifiable statechart models.

We develop the Y2U tool to transform a statechart model to a
verifiable formal model.

The designed transformation rules not only maintains the
execution equivalence between the statechart model and the
formal model, but also allow easy trace back of failed medical
properties to the statechart model.

A simplified cardiac arrest treatment scenario is used as a case
study to validate the proposed approach.

The tool is available on
www.cs.iit.edu/~code/software/Y2U.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 35 / 44

www.cs.iit.edu/~code/software/Y2U

Acknowledgement

We thank Mohammad Hosseini and Maryam Rahmaniheris for their
valuable suggestions to the Y2U tool.

The research is supported in part by NSF CNS 1545008 and NSF
CNS 1545002.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 36 / 44

Questions?

Thank You

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 37 / 44

Transformation Rules: Syntax (1)

Rule 1: State
state −→ state

Rule 2: Transition
transition −→ transition

Rule 3: Data Type
Real Number: two integers to store its integer part and fraction
part, respectively

String: an integer variable with a dictionary

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 38 / 44

Transformation Rules: Syntax (1)

Rule 1: State
state −→ state

Rule 2: Transition
transition −→ transition

Rule 3: Data Type
Real Number: two integers to store its integer part and fraction
part, respectively

String: an integer variable with a dictionary

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 38 / 44

Transformation Rules: Syntax (2)

Rule 4: Event

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 39 / 44

Transformation Rules: Syntax (3)

Rule 5: Timing Trigger

Figure: Every Timer Transformation

Figure: After Timer
Automaton

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 40 / 44

Transformation Rules: Syntax (4)

Rule 6: State Action

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 41 / 44

Transformation Rules: Execution Semantics (2)

Rule 8: Transition Priority

a state has n outgoing transitions {T1,T2, . . . ,Tn} sorted in
non-increasing priority order

the original guard of transition Ti is denoted as Gi

the transition guard for Ti is adjusted to be
Gi && !G1 && !G2 && . . . && !Gi−1

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 42 / 44

Transformation Rules: Execution Semantics (3)

Rule 9: Automaton Priority and Synchrony

Use the lockstep method to force synchronous execution based on
automaton priorities.

Suppose a model contains n automata {A1,A2, . . . ,An} that are
sorted by its execution priority in decreasing order.

Each automaton Aj is associated with an integer Ij to indicate how
many steps Aj has executed.

For each state in Aj , we add a self-loop transition which is guarded
by the negation of all existing outgoing transition guards of the state.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 43 / 44

Transformation Rules: Execution Semantics (4)

Rule 9: Automaton Priority and Synchrony (cont.)

For each transition in Aj , we add an additional guard on execution
step indicator Ij , which is conjuncted with the existing guard to force
synchronous execution.

A1: I1 == I2 && I2 == I3 && . . . && In−1 == In

Aj (j > 1): Ij < Ij−1

Ij is increased by 1 when Aj executes one step.

When the automaton with the lowest priority executes a transition, it
clears all events for current time cycle.

Chunhui Guo (IIT) Medical Guidelines to Verifiable Statechart April 14, 2016 44 / 44

	Introduction

