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Abstract—Computation-intensive multimedia applications are
emerging on mobile devices.System-on-Chip (SoC) offers high
performance at a decreased size for these devices. SoC often
integrates tens of cores and uses Network-on-Chip (NoC) as its
communication infrastructure. To ensure high yield of manycore
processors, core-level redundancy is often used as an effective
approach to improve the reliability of manycore chips. However,
when defective cores are replaced by redundant ones, the NoC
topology changes. As a result, a fine-tuned application based
on timing parameters given by one topology may not meet the
expected timing behavior under the new one. To address this
issue, we first define a metric that can measure the timing
resemblance between different NoC topologies. Based on this
metric, we develop a greedy algorithm to reconfigure a defect-
tolerant manycore platform and form a unified application
specific virtual topology on which the timing variations caused by
the reconfiguration are minimized. Our simulation results clearly
indicate the effectiveness of the developed algorithm.

I. INTRODUCTION

As technology advances, manycore architectures are be-
coming mainstreams for a large spectrum of applications,
including real-time multimedia applications. As there are many
cores on-chip, such architectures typically employ the scalable
Network-on-Chip as the communication backbone among pro-
cessing cores.

Many challenges need to be tackled for the design of NoC-
based manycore processors. Permanent core failure due to
manufacturing defects or transistors wear-out is one of the
most challenging problems. According to Sperling’s report [1],
for a Cell processor, without considering defect tolerance
during the architecture design phase, even under the best case,
the yield can be as low as 10 to 20 percent.

As there are many light weight cores on-chip, and each
core occupies a small area of the chip footprint, core-level
redundancy is proven to be an efficient technique to tackle the
above core failure problem [2]. If N cores are expected to
be provided to customers, M redundant cores will be added
on chip. Defective cores can be replaced with redundant ones,
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thus providing the demanded computing capability. However,
when a defective core is replaced by a redundant core, it
is possible that the on chip topology, i.e., the interconnect
relationship among cores is changed, for example from a
regular 2D mesh topology to an irregular topology. Such an
underlying topology with possible defective cores is called a
physical topology. Different chips may have different physical
topologies with different failure bitmaps.

It would be a great burden for application developers to con-
sider these topologies upon which their programs are designed,
deployed and optimized. Therefore, topology virtualization is
proposed to isolate various underlying physical structures, and
provide programmers with a unified interface [3].

Prior research on manycore topology virtualization mainly
focused on general computing domain and the methods pro-
posed intend to achieve better performance, in terms of
communication latency and network throughput [2], [4], [3].
However, the goals differ from the above for applications
with timing requirements, such as multimedia applications.
For multimedia applications, rather than performance, the most
important property is the synchronization between different
medias, such as the synchronization between video and audio
streams, between user inputs and device outputs. Therefore,
timing similarity instead of high performance is preferred to
avoid introducing extra cost in redesign, re-implementing, and
retesting the system when defective cores are replaced by
redundant ones.

Based on the above, in this paper we revisit topology
virtualization techniques in the real time domain. Figure 1
depicts the framework. By virtualizing the cores in a physical
topology, we can build a virtual topology that is isomorphic
to the reference design. In particular, when an application
is mapped to a manycore platform, i.e., tasks are fixed to
virtual cores, if cores on which application tasks are deployed
become defective, we virtualize redundant cores to replace
them. The task is deployed on the same virtual core from
the application’s view but on a different physical core from
hardware’s perspective.

In this paper, we focus on homogeneous manycores, in
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which all cores have the same performance, such as operating
frequencies. Therefore, deploying tasks on different cores only
impacts the communication time among tasks. For example,
the physical distance between two communicating cores may
be changed. These changes may impact the application’s
timing behavior and cause timing synchronization violations.
Therefore, it is important to maintain applications’ timing
similarity as much as possible before and after topology
virtualization.

Fig. 1: Topology virtualization for application’s timing simi-
larity

The contribution of this paper is twofold. First we propose
a metric to evaluate the timing similarity of isomorphic virtual
topologies with different underlying physical topologies. Sec-
ond we propose an efficient heuristic algorithm (polynomial
time) to solve the defective core replacement problem.

The rest of the paper is structured as follows. Prior research
is discussed in Section II. We motivate and formulate the prob-
lem of finding an appropriate virtual topology in Section III.
A heuristic algorithm, i.e. greedy algorithm, is presented in
Section IV and its effectiveness is shown through experiments
in Section V. Finally, we conclude in Section VI.

II. RELATED WORK

As mobile computing becomes pervasive, manycore NoC
platforms have been used to accommodate multimedia appli-
cations. Much of the research has been done in the area of
NoC topology explorations. For instance, Lankes et. al [5]
studied a NoC topology exploration based on a real-word
mobile multimedia application example, by using an abstract
simulation model, they pointed out that the enhanced unidi-
rectional ring topology has the best performance with latency
and chip area taken into consideration. Ma et. al [6] conducted
system-level exploration of mesh-based NoC architectures for
multimedia applications. This exploration contains two corre-
lated questions, i.e., given an application and node processing
throughput, how to determine the optimal size for the mesh
and the link bandwidth; and conversely, given an application
and its mapping to a given-sized mesh, how to optimally
size the node processing throughput and link bandwidth. They

established a simulation platform and proposed an exploration
approach to obtain the optimal design for specific applications.
Lee et.al [7] focused on designing space exploration for on-
chip multimedia applications, by comparing and contrasting
the P2P and NoC-based implementations of a real multimedia
application, they concluded that NoC design scales much
better in terms of area, performance, power and overall design
effort.

Optimization and reconfigurations for multimedia applica-
tions on NoC platforms have also been studied extensively.
Hasson [8] developed a model that enables partial reconfigu-
ration of NoCs and proposed a mapping algorithm that uses
the model to map multiple applications onto a NoC with
undisrupted quality-of-service during the reconfiguration. In
order to design the optimal application-specific NoC platforms,
Papadopoulos et.al [9] presented a new tool based on the
Nostrum NoC simulator to provide an essential evaluation
metric required for achieving the optimization in dynamic
network and multimedia applications at the system level.
Mostafavi et.al [10] devised an iterative rate control algo-
rithm to achieve the optimal solution to rate control problem
for applications with scalable multimedia services in NoC
architectures. Haiyun [11] addressed a mapping algorithm
of irregular mesh NoC for portable multimedia applications
to achieve the minimum communication cost with certain
constrains.

Virtualization provides a unified hardware interface for
applications. The topology virtualization problem for general
purpose computing is discussed thoroughly in [2], [4], [3].
Performance degradation of virtual topologies when compared
to the topology initially designed, i.e., the reference topology,
is evaluated by using two metrics, i.e., distance factor (DF) and
congestion factor (CF). The DF is the average hop count be-
tween a core and all of its virtual neighbors, which determines
the zero-load communication latency of a virtual topology. CF
is used to evaluate the channel load distribution among links
under certain routing algorithm (e.g., XY-routing). As the more
balanced the channel load, the closer the throughput of the
network is to the reference one, a reconfigured topology that
balances traffic more evenly across all NoC links is preferred.
The topology virtualization problem is then formalized based
on these two performance metrics. A heuristic called Row
Rippling Column Stealing (RRCS) is proposed in [2]. The
essence of the heuristic is to maintain the physical regularity of
reconfigured virtual topologies in both row and column units,
and hence to maximize performance. It is also worth noting
that the RRCS method is application agnostic, where as the
application is the primary consideration in our greedy method.
Our comparison shows that when the application is known e.g.
mobile/embedded application, this information can be used to
achieve better timing similarity.

Rather than using performance as a single objective, many-
core topology virtualization for applications with specific
timing requirements, such as real-time applications, also needs
to consider maintaining timing similarities among different
topologies. Many notions of timing behavior similarities have
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been proposed in various literature. For instance, Huang et al.
[12] investigate the real-time property preservation between
similar timed state sequences (execution traces of timed sys-
tems). The authors later extend the results to concurrent real-
time systems in [13]. Henzinger et al. [14] define quantitative
notions of timed similarity and bisimilarity on timed systems.
They also give algorithms to compute the similarity distance
between two timed systems modeled as timed automaton.
Recent research results show that the timing behavior of a
system can be characterized by a feasible region defined by
the system’s timing constraint set [15], [16].

Different from prior work listed above, we focus on topol-
ogy virtualization for applications in which rather than perfor-
mance, timing similarity is the paramount requirement. The
virtualization objective is to use redundant cores provided on
the chip to replace defective cores and at the same time to
maximize the timing resemblance of the newly configured one
to the manycore topology that is initially designed. The recon-
figuration procedure is intended for offline implementation in
order to improve the yield of multicore NoCs.

III. MOTIVATION AND PROBLEM FORMULATION

In this section, we first present the motivation of this work,
and then formulate the problem the paper is to address.

A. Motivation

Assume a multi-media application is to be deployed on a
9 core processor with 3 × 3 2D mesh topology. The 3 × 3
mesh is referred as reference topology. To enhance the yield
of the 9-core chip, we provide another 3 redundant cores as
shown in Figure 2. If, for instance, core C4 is defective, the
remaining defect-free cores form a new physical topology. We
can virtualize the defect-free cores and provide applications a
virtual 3× 3 2D mesh topology. There are several ways to do
this, for instance, in Figure 2, the three redundant cores, i.e.,
R0, R1, or R2, can be used to replace the defect core C4, and
hence generate three different virtual topologies. We use i and
(i) to index a physical core and a virtual core, respectively.
Even though applications are given a unified 3× 3 2D mesh,
but different virtual topologies have different properties, such
as latency and throughput.

For instance, consider the filter application given in [17].
The application consists of six communicating tasks as shown
in the application layer of Figure 3, where the value on each
edge represents data transfer rate between two communicating
tasks. If the six communicating tasks are mapped to a 3 × 3
mesh topology as shown in Figure 3, i.e., task v1 and v4 are
mapped to C(3), v2 and v3 to C(1), and v5 and v6 to C(4),
then the traffic flow among two virtual cores are the summation
of data transfer rates that go through the two cores. For the
given mapping, the communication flow between virtual core
C(1) and C(3) is 300 bits/cycle which is the summation of
data transfer rate between v1 and v2, and between v4 and v3.
Figure 4 gives the traffic flow among different cores.

More generally, for a given application that is mapped to s
cores supported by a n × (n + 1) physical topology with n

redundant cores, if among the s cores, p (p ≤ min{s, n}) cores
become defective, we have

(
n
p

)
p! number of different ways to

form a virtual topology which is topologically isomorphic to
the application’s initial design. Then, the question is which
one we should choose.

Consider again the filter application and its initial mapping
(Figure 3). When there is no defect cores, the resultant traffic
flow between virtual cores is listed in Table I. The traffic rate
in the table indicates the number of bits transferred between
two virtual cores per cycle and the hop count is the number
of physical hops between two virtual cores using XY-routing
algorithm. Using the NIRGAM NoC interconnect routine and
application modeling tool [18], we obtain that the average
packet latency for this initial reference topology is 26.34
cycles.

However, if the physical core C4 becomes defective, it
can be replaced by one of the redundant cores R0, R1, or
R2. Depending on which redundant physical core is used,
the resulting topologies’ hop count, traffic rate, and average
package latency under XY routing between virtual cores are
different as shown in Table II. From the table, it is clear that for
the specific application, using R0 as the new virtual core C(4)

C1

(b) Virtual topology

(a) Physical topology
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Fig. 2: Physical topology and virtual topology
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Fig. 3: Mapping application to virtual topology
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Fig. 4: Traffic flow between virtual cores

has the least average packet latency difference from the initial
reference topology which has average latency of 26.34 cycles.
Hence, R0 is the best choice if similar timing behavior is used
as the evaluation metric. In fact, latency is the most important
metric to evaluate interconnection network. If two networks
have the same timing behavior, i.e., the same task-to-task
communication latency, we can safely assume that applications
have the same timing properties under homogeneous manycore
platforms.

Traffic Between
Virtual Cores

Corresponding
Physical Cores

Traffic
Rate

Hop
Count

C(1) ↔ C(4) C1 ↔ C4 300 1
C(1) ↔ C(3) C1 ↔ C3 300 2
C(3) ↔ C(4) C3 ↔ C4 0 1

TABLE I: Scheduling on initial defect-free topology

Traffic Between
Virtual Cores

Corresponding
Physical Cores

Traffic
Rate

Hop
Count

AvgPack
Latency

C(1) ↔ C(4) C1 ↔ R0 300 2 26.73
C(1) ↔ C(4) C1 ↔ R1 300 3 27.45
C(1) ↔ C(4) C1 ↔ R2 300 4 28.9

TABLE II: Virtualizing different redundant cores for C(4)

B. Problem Formulation

Before formulating the problem of finding an appropriate
virtual topology for a given application, we make two as-
sumptions regarding the NoC-based manycore system. First,
the manycore system is a 2-D mesh network running under
XY routing. Second, defective cores can only be replaced by
redundant ones so that the defect-free cores responsible for
other applications are not disturbed.

In order to analyze the timing resemblance between the
reference and the virtual topologies, the timing behavior of
a NoC-based manycore system upon which a specific applica-
tion is deployed has to be first defined. As for homogeneous
manycore systems, processors speeds are the same. Hence,
on-chip communication becomes the dominant factor that
differentiates various virtual topologies’ timing behaviors.

We use traffic flow occupancy F(i),(j) to quantify the
communication pattern from virtual cores C(i) to C(j). The
formal definition is given below:

Definition 1 (Traffic Flow Occupancy): For a given virtual
topology T k, the traffic flow occupancy from virtual core C(i)

to core C(j) is defined as

F k
(i),(j) =

{
τ(i),(j) ×Hk

(i),(j) if the application uses C(i), C(j)

0 otherwise
(1)

where τ(i),(j) is the communication rate from virtual core C(i)

to virtual core C(j), and Hk
(i),(j) is the number of hops from

C(i) to C(j) under a given topology and routing algorithm. In
this paper a 2D mesh topology with XY routing is used.

�
For instance, according to Table I, τ(1),(3) and Hk

(1),(3) are 300
and 2, respectively, then the traffic flow occupancy F k

(1),(2)

from virtual core Ck
(1) to Ck

(3) is equal to 600.
For two different virtual topologies, T k and T r, their traffic

flow occupancy difference from virtual core C(i) to C(j) can
be calculated by

Δk,r
(i),(j) = |F k

(i),(j) − F r
(i),(j)| (2)

where F k
(i),(j) and F r

(i),(j) are application’s traffic flow oc-
cupancy from virtual cores C(i) to C(j) for virtual topology
T k and T r, respectively. Clearly, the smaller the occupancy
differences among all virtual core pairs, the higher the timing
similarity among the two topologies. A metric which is similar
to the average and standard deviation is used to characterize
the change of the traffic flow occupancy. We use Ave and V ar
to model the traffic flow occupancy difference of the entire
topology and the individual communication links respectively.
Their definitions are given below:

Definition 2: (Normalized Average Traffic Flow Occupancy
Difference)

For a given topology T k which is topologically isomorphic
to the reference topology T r of size n × n, the normalized
average traffic flow occupancy difference is given by

Avekr =

∑
(i,j)∈F

Δk,r
(i),(j)

Ψr|F | (3)

where F is the set of traffic flows of the application and Ψr

is the average traffic flow occupancy of the reference topology
T r given by

F = {(i, j)|F r
(i),(j) �= 0, 0 ≤ i, j < n2} (4)

Ψr =

∑
(i,j)∈F

F r
(i),(j)

|F | (5)

�
Definition 3: (Normalized Variation of Traffic Flow Occu-

pancy Difference)
For a given topology T k which is topologically isomorphic

to the reference topology T r of size n × n, the normalized
variation of traffic flow occupancy difference is given by
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V arkr =

√√√√√√√
∑

(i,j)∈F

(
Δk,r

(i),(j)

Ψr
−Avekr )

2

|F | (6)

�
Definition 4: (Virtual Topology Timing Similarity)
For a given topology T k which is topologically isomorphic

to the reference topology T r of size n × n, their timing
similarity χ(T k

r ) is defined by

χ(T k
r ) = wa ×Avekr + wv × V arkr (7)

where wa and wv (wa + wv = 1) are the weights applied to
the Ave and V ar respectively. Note that throughout this paper
we let wa = wv = 0.5.

�
With the similarity metric, we formulate the problem that

the paper is to address as follows:
Problem 1: For a given reference topology T r supported

by an n× (n+ 1) physical topology with n redundant cores,
and on which a given application A is deployed, if cores
used by the application A become defective, construct a
virtual topology T opt for the given application so that it is
topologically isomorphic to T r but without defective cores,
and further it satisfies the requirement (8)

χ(T opt
r ) = min{χ(T k

r )|T k is isomorphic to T r} (8)

�
As defect-free cores in a physical topology can be placed

in any location in a virtual topology, the solution space of
the topology reconfiguration problem, i.e., all possible virtual
topologies topologically isomorphic to initially designed ref-
erence topology, is combinatorially large. Therefore, efficient
heuristics are needed in order to solve the problem.

IV. RECONFIGURATION ALGORITHMS

In this section, we present a heuristic reconfiguration algo-
rithm, the greedy algorithm.

A. Greedy Algorithm

The key concept of a greedy algorithm is to find a local
optimal solution and combine them to get a global solution.
Based on this strategy, Consider the application A which is
mapped to a reference topology T r. T r is supported by an
n × (n + 1) physical topology with n redundant cores. The
objective then is to replace p, 0 ≤ p ≤ n defective cores.An
approximation (T approx) to the optimal T opt can be obtained
by finding the local optimal topology T opt

i , i = 0, · · · , p, for
the ith defective core being replaced by a redundant one.

To illustrate the procedure of the greedy algorithm, again
consider the 3×3 mesh topology with applications mapped to
cores as shown in Figure 2. Assume the physical cores C3 and
C4 become defective, we need to choose 2 redundant cores to
form a new virtual topology that is the most similar to the
initial reference topology from timing perspective.

First, we need to compute the overall traffic flow occupancy
for each defective core to determine the order in which the
defective cores are replaced. For a specified virtual core C(m)

in virtual topology T k, the total traffic flow occupancy is
defined as:

TCk
(m) =

∑
0≤i≤n2

F k
(m),(i) +

∑
0≤i≤n2

F k
(i),(m) (9)

The virtual core with the largest traffic flow occupancy should
be replaced first. For the given example, TCk

(3) = 600 and
TCk

(4) = 300, thus the order for replacing the defective cores
should be C3 and then C4.

Next, replace the defective core C3 with three redundant
cores R0, R1 and R2 to get three respective virtual topolo-
gies T 0

r , T
1
r , and T 2

r . By (7), we obtain the corresponding
χ(T 0

r ), χ(T
1
r ) and χ(T 2

r ) which are 0, 4.69 and 9.38, respec-
tively. As χ(T 0

r ) has the smallest value, i.e., T 0
r most resem-

bles T r, therefore T 0
r is the local optimal virtual topology

T opt
1 when the first defective core C3 is replaced. We then use

R0 to replace core C3 which forms a new virtual core C(3) to
physical map.

C1

C1

C0

C3(R0)

C6

C1

C4

C7

C2

C5

C8

R0

R1

R2

C1

C0

C3

C6

C1

C4

C7

C2

C5

C8

R0

R1

R2

Fault-Free Core

Faulty Core

Redundant Core

Virtual topology with an application 
deployed

Step1. Physical topology with 2 faulty cores

Step3. Defective C4 replaced by R1

C0

C3(R0)

C6

C1

C4(R1)

C7

C2

C5

C8

R0

R1

R2

C(5)

C(6) C(7) C(8)

C(4)

C(2)C(0) C(1)

C(3)

C(1)

Step2. Defective C3 replaced by R0

Fig. 5: Examples of greedy algorithm.
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Lastly, replace the defective core C4 with one of two
remaining redundant cores R1 and R2, we obtain two pos-
sible virtual topologies T 1

r , T
2
r . The corresponding χ(T 1

r ) and
χ(T 2

r ) is 6.93 and 10.39, respectively. Therefore, T opt
2 is T 1

r

and R1 is used to replace C4. The aproximation to the optimal
virtual topology T approx

r includes physical cores C1, R0, and
R1, as shown in the Figure 5. The virtual cores C(3) and C(4)

are re-mapped to physical cores R0 and R1.
Figure 5 depicts the process where every time a redundant

core is selected to replace a defective one, its color is changed
from gray to white to indicate that it becomes part of the
topology.

Algorithm 1 summarizes the above steps.

Algorithm 1 Greedy algorithm (T r,A, p, n)

1: Sort the order for replacing the defective cores based
on (9)

2: assume all the defective cores are removed from the
reference topology

3: for i = 1, · · · , p do
4: add Ci to the reference topology;
5: replace the defective core Ci by the redundant core j

that has the smallest χ(T j
i ) and obtain the local optimal

topology T opt
i

6: Remove redundant core Rj from the redundant core set;
7: Use T opt

i as the new reference topology;
8: end for
9: return T opt

p

It is not difficulty to see that the time complexity for the
greedy algorithm is O(n2).

V. EXPERIMENTAL RESULTS

In this section, we use the NIRGAM (NoC Interconnect
Routing and Application Modeling) [18] simulator to compare
the performance among different reconfiguration algorithms.
In particular, we first compare the average latency using the
greedy algorithm and RRCS algorithm [2]. We then compare
the two algorithms via the task-to-task traffic latency. The
result shows that our greedy algorithm reaches a better timing
similarity result than RRCS.

A. Experiment Setup

NIRGAM is a modular and cycle accurate simulator devel-
oped in SystemC. In NIRGAM, a 2D NoC mesh of tiles can
be simulated by different design options, e.g., virtual channels,
clock frequency, buffer parameters, routing mechanisms and
applications patterns, etc. Each NIRGAM tile consists of
various components, such as input channel controller, virtual
channel allocator, output channel controller, and IPcores. Each
IPcore is attached to a router/switch by means of a bidirec-
tional core channel.

In our experiment, each tile is a traffic generator that keeps
a constant data transfer rate for a specified communication
graph. We use wormhole switching and deterministic XY
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Fig. 6: The application’s task graphs and the mapping gener-
ated to a 5× 5 mesh

routing on the NoC. Each packet contains one flit of 8 bytes
and the buffer size for the FIFO input chancel is 2 flits. Each
physical link has 4 virtual channels. All tasks are executed
concurrently and begin to send packets after a 5 cycle warmup
time. Tasks continue to send packets for an additional 3000
cycles after the warmup time.

B. Comparison with RRCS

In this experiment, we evaluate the effectiveness of the
greedy algorithm using task graphs provided by the embedded
system benchmark suite (E3S)[19]. We choose two applica-
tions from the Office Automation Benchmark provided by the
suite, i.e., application1 and application2, whose tasks perform
dithering, image rotation and text processing, and obtain the
communication relationship among tasks as shown in Figure 6
(a) and (b), respectively. Based on [20], the tasks are mapped
to a 5× 5 2D mesh with additional 5 spare cores as shown in
Figure 6. The numbers attached to the graph nodes represent
the cores assigned to the tasks after the mapping. For instance,
the nodes of application1 are mapped to the physical cores
C15, C6, C13 and C19, respectively. The values attached to the
edges, such as the value 500 between C15 and C6, corresponds
to the data transfer rate between the two cores in MB/s. The
data transfer rate is calculated based on the packets transferred
per cycle between two tasks using the task graph mentioned
in [20]. Next, we assume there are 1, 2, 3 and 4 randomly
distributed defective cores among the cores occupied by the
two applications.

With application1, when there is only one defective core, it
can be randomly distributed among the four cores the appli-
cation uses. For each of these cases, a new virtual topology is
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Fig. 7: Average latency between virtual topologies generated by greedy and RRCS algorithms(closer to reference is better)

generated using the greedy and RRCS algorithms to replace
the defective core. We then calculate the average packet
latency. Similarly, when there are two defective cores, there
are six different ways these defective cores can be located,
again, for each case, we use the three different algorithms to
find a new virtual topology and calculate the average packet
latency. Repeat for the cases with three and four defective
cores. Figures 7a and 7b depict the results for application1 and
application2 respectively. Overall, for both applications the
greedy algorithm generates a topology whose average latency
varies by no more then 18% from the reference one.

In the previous experiments, we focus on the average
latency for all links. Next, we investigate the latency for
each individual link among the tasks. We evaluate task-to-task
traffic latency for application2.

As seen in Figure 6(b), application2 has 9 traffic links
among tasks. Tasks maintain the constant bit rate on each
edge which is given in in Figure 6(b). The communication
latency for each traffic flow Li, i = 1, . . . , 9, represents the
timing interval between sending the first packet on the source
core and receiving the last packet on the destination core. For
example, on link L6, the source core C(3) sends a packet to
C(20) every 48 cycles to keep the traffic rate listed on the
communication graph. So the last packet is sent at 2928 and
the destination core receives the last packet at 2942.

If any core is defective, the irregularity of the underly-
ing physical topology brought by the presence of defective
cores causes inevitable changes in the timing behavior, and
the communication latencies for some flows indeed change
significantly. For instance, we assume the cores C3 and C4 are
defective and different cores are used to replaced them based
on different reconfiguration algorithms. The communication
latencies for the traffic flow Li in the reference topology and
topologies generated using RRCS and greedy are shown in
Figure 8.

C. Discussion of Results

Some observations are made concerning Figures 7 and 8.
First it is important to restate that lower latencies are not
necessarily desirable. The objective is to minimize the delta
from the reference mapping, without regard to its direction.
This allows fewer assumptions to be made about the objectives
of the reference mapping and thus the application. It is
assumed the mapping is valid and that a similar mapping will
also be valid.

Looking at Figure 7 it can be seen that RRCS performs
better than greedy in the case that five cores are defective.
RRCS attempts to maintain the regularity of the virtual cores
with respect the their initial locations instead of moving only
the defective cores. This will avoid the problem seen for
five cores where the right most column is highly utilized
which results in congestion among those links. A potential
solution is to assume the redundant cores are distributed evenly
throughout the NoC. However, their placement in the right
most column is an assumption made by the RRCS algorithm
and hence we adopted here for better comparison. A similar
explanation can be given regarding the poor similarity of Link
6 in Figure 8. Notice however that in this case greedy performs
better than RRCS which brings us to our final note.

Both the greedy and RRCS approach are heuristic algo-
rithms and may not give predictable solutions. Indeed, much
work remains to fully understand the greedy algorithm and its
performance under different conditions.

VI. CONCLUSION

There are many considerations when virtualizing manycore
systems in presence of manufacturing defects and device
wear-outs for multimedia applications. The desired hardware
architecture, timing requirements, and the on-chip redundancy
distributions must be understood. By taking these factors into
consideration, the developed heuristic algorithm allows us to
find the virtual topology that is most similar, in terms of
their timing behaviors captured by their average pair-wise
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Fig. 8: Task-to-task latency comparison for application2.

network latencies, to the reference topology an application
is initially designed on. The simulation results show that
with our approach, the timing differences between the re-
configured topology and reference topology introduced by
replacing defective cores are no more than 18% for the
examples given.

Our immediate next step is to continue to better understand
the performance of the greedy algorithm. We will evaluate
the approach using many random applications across different
dimensions. Specifically we will look at the performance
related to the number of tasks in the application, the number
of nodes in the NoC and the utilization of the links bandwidth.
We will also compare with the optimal solution when the
number of tasks remains small.

The research presented in the paper is only the first step
toward applying virtualization technologies to real-time mul-
timedia applications. We are all aware that for hard real-time
applications, minimizing average pair-wise communication
latency change may not guarantee stringent timing properties
required by these applications. In the future we will study how
reconfiguration may impact hard real-time applications, and
investigate virtualization techniques that guarantee deadline
satisfactions.
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