
2011 6th International Conference on Risks and Security of Internet and Systems (CRiSIS)

978-1-4577-1891-5/11/$26.00 ©2011 IEEE

Optimal Voting Strategy Against Rational Attackers

Li Wang, Zheng Li, Shangping Ren∗
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616

{lwang64, zli80, ren}@iit.edu

Kevin Kwiat†
Cyber Science Branch

Air Force Research Laboratory, AFRL/RIGG
Rome, NY 13441

Email: kwiatk@rl.af.mil

Abstract—Voting algorithms are often used to improve a
system’s reliability through fault tolerance. However, when both
the reliability of individual voters and the existence of rational
attackers are taken into consideration, the number of voters that
participate in an actual voting process determines the fault-and-
attack tolerance performance of voting algorithms. In this paper,
we are to find an optimal voting strategy (i.e., the optimal number
of participating voters) against rational attackers whose goal is
to defect the system by strategically compromising individual
voters across the system. We model the problem of deciding
the number of participating voters against rational attackers
as a two-person zero-sum game problem and provide solutions
based on the results from this well-known game problem. A set
of experiments are performed to illustrate the voting strategy’s
performance in the presences of rational attackers.

Index Terms—Attacker-defender Problem; Voting Strategy;
Game Thoery; Reliability

I. INTRODUCTION

For many safety-critical systems, such as air traffic control
systems, fly-by-wire systems, etc., ensuring their reliability is
often paramount. However, the system’s reliability can be com-
promised when it is under cyber attacks. Furthermore, even for
uncompromised components, they rarely have 100% reliabil-
ity [11]. Hence, in order to improve the system’s reliability,
redundancy approaches, such as N-Modular Redundancy [20],
and N-Version Programming [3], [6] are often used. With these
approaches, systems can still perform correctly even when
some of the replicas become faulty or have been compromised.

To achieve reliability in the presence of possible replica
failures, voting algorithms are often used. There are many dif-
ferent voting algorithms. For instance, Unanimity voting [12]
generates a result when all the replicas are in agreement. This
type of voting algorithm is used when reaching agreement by
all replicas is needed. However, it does not tolerate any replica
failures. Majority voting [26] algorithm takes the majority as
its final value, while Plurality voting [12] is a less strict form
of majority voting. It requires m-out-of-n replicas to agree on
the same result, where m is less than a strict majority of n
(i.e., m < dn+1

2 e).
In [11], a blending of fault and attack tolerance of three

majority voting algorithms: Majority Rule (MR), Random
Dictator (RD), and Random Troika (RT), is studied. For MR,

∗The work is supported by NSF CAREER Award (CNS0746643)
†Approved for Public Release; Distribution Unlimited: 88ABW-20113364,

JUN 13, 2011

it needs all the replicas to vote, while RD randomly chooses
one replica’s value as its result. Although RT also belongs
to the majority voting family, the selection of the Troika is
rather random, and the final result is decided by the majority
of the three chosen replicas. The conclusion in [11] states that
none of these three voting algorithms is always superior to
the others when the number of uncompromised replicas and
each replica’s reliability vary. Therefore, in order to maximize
system reliability, different voting strategies should be applied.
In this paper, a voting strategy is defined as choosing the
number of replicas that participate in voting.

The selection of the voting strategy is a challenging issue
when the system is attacked by a rational attacker because
the attacker’s strategy is almost always unknown in advance.
In addition, earlier work [11] only considers three special
majority voting algorithms in which the number of votes
involved are n (MR), 1 (RD), or 3 (RT), respectively. In fact,
the number of voters in majority voting can range from 1 to
n, where n refers to the total number of replicas available.

In this paper, we aim to find out the optimal number of
participating voters in majority voting when the system is
attacked by a rational attacker. In particular, we consider a
scenario in which a system is composed of multiple clusters,
and each cluster consists of the same number of replicas. We
assume that the attacker only makes the effort to compromise
the system when the system is in operation, and the attacker
has to decide how many clusters to attack to minimize the
number of surviving clusters. The defender has to decide the
number of participating voters in each cluster that maximize
the number of surviving clusters.

The rest of the paper is organized as follows. Section II
discusses the related work. In Section III, we formally define
the optimal voting strategy problem and provide the solution
to the problem in Section IV. The experimental results are
shown and discussed in Section V. Finally, we conclude and
point out future work in Section VI.

II. RELATED WORK

The analysis of attacker-defender problems have been stud-
ied for many years. Wang et al. [29], [30] discussed the
attacker-defender problem and analyzed how to hide the
location of the core components and allocate resources to
maximize a system’s availability, when the system is under
cyber attack. In [1], Bier et al. applied game theory to identify

optimal defenses against intentional threats to system reliabil-
ity. In their system model, they considered both series and
parallel systems, and illustrated how the optimal allocation of
defensive investments depends on the structure of the system,
the cost-effectiveness of infrastructure protection investments,
and the adversary’s goals and constraints.

In [17], Levitin et al. proposed three defense approaches
(i.e., false targets, protection, and replication) to minimize
system damage when both the defender and the attacker
have limited resources, and illustrated the minimum number
of genuine components needed to meet the system demand
and how the defender and attacker choosed their strategies
when the contest intensity changes. In [16], they analyzed
how to allocate resources between deploying false targets and
enhancing object protection when protecting a single object.
They concluded that the optimal number of false targets does
not depend on the attacker’s resources but only depends on
the relative target cost. In [15], the approaches of protection
and redundancy are provided to reduce the expected damages
caused by the attacks. The vulnerability of each system
element is determined by an attacker-defender contest success
function, and the expected damage caused by the attack is
evaluated as the system’s unsupplied demand. In addition,
the attacker-defender problem in multi-state systems is also
studied in [13], [14], [18], [19].

Our work differs from those discussed above in two aspects.
First, in our work, we assume that attackers are given a fixed
amount of time to compromise the system. This assumption is
reasonable for mission critical applications that only operate
for a certain period of time, such as battle field applications.
In the work discussed above, attackers are assumed to have a
fixed amount of attack resources. A second difference is the
defender’s model. In earlier work, defenders are given a fixed
amount of defensive resources that are distributed according
to different defensive approaches. However, in our work, the
defender has no extra resources, but can only choose different
ways to vote to maximize the system’s expected number of
surviving clusters.

In [9], Hardekopf et al. proposed a decentralized voting
algorithm that improves system dependability and protects
the system from faults and hostile attacks. In [27], Tong et
al. showed how to make optimal weight assignments for the
majority voting strategy in systems and also proposed a new
effective vote assignment algorithms which aimed to maxi-
mize system reliability. In [5], Davcev proposed a dynamic
weighted voting scheme for consistency and recovery control
of replicated files in distributed systems. More weighted voting
schemes are discussed in [2], [8], [24].

There are two differences between our work with those
discussed above. First, we consider a centralized voting
scheme rather than a decentralized voting scheme in our
medel. Second, in our system model, up to n components
can be involved to form the voting components. However, the
previous work’s voting machanism is based on fixed number
of voting components.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries and Assumptions
We assume the system consists of n independent clusters,

and each of them is composed of s replicas. The reliability
of each individual uncompromised replica is p. For each
cluster, its reliability is the probability that a correct final
result is obtained through a voting process. Figure 1 shows the
configuration of a cluster in a system. We use s to denote the
cluster size, i.e., the total number of replicas in the cluster; and
f refers to the number of compromised replicas in the cluster;
and k denotes the number of participating voting replicas. In
this paper, the terms ”voters”, ”voting replicas”, ”participating
voters”, and ”replicas that vote” are synonymous.

Fig. 1: The cluster configuration

We further assume that the system is to operate for D
time units, and it is only during the system operation time
that the attacker can attempt to compromise the system.
For an attacker, the time needed to compromise a system
component depends on the component’s vulnerabilities and the
attacker’s skill level [21], [22]. We assume that the attacker can
successfully compromise m replicas within that D time units.
The attacker knows the the number of clusters, the number
of replicas in each cluster, and the replicas’ reliability in the
system, but the attacker does not know how many replicas are
chosen to participate in voting within a cluster.

For the attacker, his strategic decision is to decide how many
clusters to attack. Assume the attacker chooses h (h ≤ n)
clusters to attack and evenly distributes the effort among the
clusters, which indicates that there are at least f = bmh c
compromised replicas in the h chosen clusters, and no com-
promised components in the remaining n− h clusters. When
m is not evenly divided by h, say that the division ends with
remainder q, that is q = m mod h. Under this scenario, the
attacker will compromise bmh c + 1 replicas in the first q out
of h clusters, and compromise bmh c replicas in the remaining
h− q clusters.

The defender aims to maximize the number of surviving
clusters (i.e., the clusters which can produce a correct result
under attack). The defender’s strategy is to decide the number
of participating voters k (1 ≤ k ≤ s) for each cluster, and the
result produced by the cluster is through the majority voting
from the chosen participating voters.

B. The Reliability of a Cluster not under Attack
When the cluster is not under attack, none of the replicas

in the cluster is compromised. Assume the defender chooses

k (1 ≤ k ≤ s) replicas to vote in each cluster, where s is the
size of each cluster. The final result is decided by the majority
of the results from the k chosen replicas. In order to have a
correct result, at least dk+1

2 e replicas must vote correctly. We
use θ(k) to refer to the probability that the cluster is able to
produce a correct result when it is not under attack, and we
have

θ(k) =

k∑
i=d k+1

2 e

(
k

i

)
pi(1− p)k−i (1)

where k refers to the number of voting replicas, p is each
replica’s reliability.

C. The Reliability of a Cluster under Attack

When the cluster is under attack, assume f out of s replicas
are compromised by the attacker, and the defender chooses
k replicas to vote. In order to produce a correct result, the
number of uncompromised replicas in the k replicas needs
to be at least dk+1

2 e. Therefore, the minimum number of
uncompromised replicas in the k replicas can not be smaller
than dk+1

2 e. However, when the number of compromised
replicas in the cluster is small (i.e., f < bk−12 c), the min-
imum number of uncompromised replicas in that k replicas
will be k − f , which is larger than dk+1

2 e. Therefore, the
minimum number of uncompromised replicas in the k replicas
is max(dk+1

2 e, k − f).
Similarly, when the number of compromised replicas f

in the cluster is large (i.e., f > s − k), the number of
uncompromised replicas in the k replicas can not exceed
min(k, s − f). Therefore, if the number of uncompromised
replicas is i, we have max(dk+1

2 e, k−f) ≤ i ≤ min(k, s−f).
Assume j out of i uncompromised replicas vote correctly, in

order to produce a correct result, we must have dk+1
2 e ≤ j ≤ i.

We use ϕ(k, f) to denote the probability that the cluster is able
to produce a correct result under f failures when k replicas
are involved in the majority voting, and we have
ϕ(k, f) =∑min(k,s−f)
i=max(d k+1

2 e,k−f)

(
s−f
i

)(
f

k−i
)∑i

j=d k+1
2 e
(
i
j

)
pj(1− p)i−j(

s
k

)
(2)

where

∑min(k,s−f)

i=max(d k+1
2
e,k−f)

(s−f
i)(f

k−j)

(sk)
is the probability of

choosing k participating voting replicas among which
the number of uncompromised replicas is between
max(dk+1

2 e, k − f) and min(k, s− f).

D. Problem Formulation

Assume there are n clusters in the system and the number
of replicas in each cluster is s. The attacker can compromise
m replicas in total and chooses h clusters to attack. The
defender decides upon the k participating voting replicas in
each cluster. We use T (k, h) to denote the expected number

of clusters which are able to produce a correct result, based
on the analysis above, we have

T (k, h) = (n− h)θ(k) + (h− q)× ϕ(k, f)
+q × ϕ(k, f + 1) (3)

where f = bmh c, and q = m mod h.
Our goal is to decide an optimal value k to maximize

T (k, h) given that for any k the attacker chooses h that
minimizes the value T (k, h). That is

max
k

min
h
T (k, h) (4)

IV. DETERMINING THE OPTIMAL VOTING STRATEGY

For a defender, as he can choose any number of participants
to perform majority voting in the cluster with size s, hence
the number of possible voting strategies is d = s.

The total number of replicas the attacker can successfully
compromise is m, and these compromised replicas can be
scattered among at least dms e clusters. As the number of
clusters in the system is n, hence the number of clusters being
attacked, h, is in the range of [dms e, n]. Therefore, the total
number of possible attack strategies is g = n− dms e+ 1.

Once the strategy of both defender and attacker is decided,
the expected number of surviving clusters T (k, h), i.e., the
clusters which produce a correct result under attack, can be
calculated according to equation 3.

The gain of the defender is the loss of the attacker, and
vice versa. A game in which one player wins what the other
player loses is called a two-person zero-sum game [25]. The
optimal voting strategy problem can be mapped to the two-
person zero-sum game problem.

It has been proved that the two-person zero-sum game is
equivalent to the linear programming problem [10]. Therefore,
in order to find out the optimal voting strategy, we trans-
form the optimal voting problem into a linear programming
problem. In our work, we simply follow the steps proposed
in [31] to perform the transformation. Here, we first present
the steps in Algorithm 1 and provide the detailed explanation
and discussion afterward.

If the defender uses strategy x and the attacker uses strategy
y, the expected number of surviving clusters for this pair of
strategies is E(x, y) =

∑d
i=1

∑g
j=1 xitijyj [7]. For any strat-

egy x that the defender chooses, the attacker’s goal is to choose
an attack strategy y that minimizes the expected number of
surviving clusters. In this case, the defender can expect to
have at least min

y
E(x, y) surviving clusters. Therefore, the

defender aims to select his particular strategy x to maximize
min
y
E(x, y).

It has been proved that min
y
E(x, y) = min

j

∑d
i=1 xitij [28].

Therefore, no matter what the attacker’s strategy is, the de-
fender is assured of obtaining at least min

j

∑d
i=1 xitij . Let

X be the lower bound for each of the j summations, that is
∀j = 1, 2, . . . , g,

∑d
i=1 xitij ≥ X . Then, the defender’s goal

Algorithm 1 DETERMINE THE OPTIMAL VOTING STRATEGY

Input:
n: total number of clusters in the system;
s: total number of replicas in each cluster;
p: the reliability of each replica;
m: total number of replicas the attacker can compromise;

Output:
x: the defender’s optimal voting strategy;
X: the expected number of surviving clusters;

1: d← s
2: g ← n− dms e+ 1
3: Create a d × g matrix T = (tij), where tij denotes the

expected number of surviving clusters if defender chooses
its ith voting strategy and attacker chooses its jth attack
strategy.

4: Create a d-dimensional vector x = (x1, . . . , xd)
T and

a g-dimensional vector y = (y1, . . . , yg)
T to denote the

probability of choosing the ith voting strategy by defender,
and jth attack strategy by attacker, respectively, where∑d

i=1 xi = 1,
∑g

j=1 yj = 1.
5: Create the equivalent linear programming problem for the

optimal voting problem.
6: Use simplex algorithm to solve the linear programming

problem, and get x and X .

is equivalent to maximizing X , and we have

maximize X (5)

subject to:
d∑

i=1

xi = 1 (6)

d∑
i=1

tijxi ≥ X, ∀j = 1, 2, . . . , g (7)

xi ≥ 0, ∀i = 1, 2, . . . , d (8)

The attacker, on the other hand, tries to minimize the
expected number of surviving clusters by choosing an optimal
attack strategy against the defender’s strategies. By using a
similar analysis above, the attacker’s goal is to minimize
max

x
E(x, y), where max

x
E(x, y) = max

i

∑g
j=1 yjtij . Let Y

be the upper bound for each of the i summations, that is
∀i = 1, 2, . . . , d,

∑g
j=1 yjtij ≤ Y , the attacker’s goal is

equivalent to minimizing Y , and we have

minimize Y (9)

subject to:
g∑

j=1

yj = 1 (10)

g∑
j=1

tijyj ≤ Y, ∀i = 1, 2, . . . , d (11)

yj ≥ 0, ∀j = 1, 2, . . . , g (12)

After solving these two linear programming problems by
using the simplex algorithm proposed in [4], we will get X ,
Y , x, and y, where both X and Y refer to the expected
number of surviving clusters, x and y contain the probability of
each strategy taken by the defender and attacker, respectively.
Actually, according to Von Neuman’s Minimax Theorem [23],
for both defender and attacker, if x and y are their optimal
strategies, we can have X = Y .

If there exists one element in vector x = (x1, . . . , xd)
T

which is equal to 1, it means its corresponding strategy is
always the best no matter how the attacker’s strategy is chosen.
A similar conclusion can be made for the attacker if there
exists one element in vector y = (y1, . . . , yg)

T which is equal
to 1. If no such element exists in the probability vector, it
indicates that no deterministic decision can be obtained.

The following example illustrates the process of determining
the optimal voting replicas in the cluster.

Example 1 Assume a distributed system has n = 10
clusters, and each cluster consists of s = 25 replicas, the
reliability of each replica is p = 0.9. The total number of
replicas the attacker can compromise is m = 25. For the
defender, we assume that only an odd number of replicas is
chosen to vote, therefore, the total number of voting strategies
is d = d s2e = 13. For the attacker, the total number of attack
strategies is g = n− dm/se+ 1 = 10.

Table 1 displays all possible outcomes of an attack on 10
clusters with 10 scenarios of attack strategies and 13 possible
defense choices. The values in the table represent the expected
number of surviving clusters given the defense choice and the
attack strategy.

Based on the results in the table, if the attacker attacks 8
out of 10 clusters (h = 8), and the defender chooses 13 out
of 25 replicas to vote (k = 13), then the expected number
of clusters which generate a correct result is 9.9716, and
obviously, this strategy is not optimal for the attacker because
if the defender sticks to the same voting strategy (i.e., choosing
13 out of 25 replicas to vote), then the attacker will prefer to
attack 2 out of 10 clusters to decrease the expected number
of surviving clusters to 8.6389, rather than attacking 8 out
of 10 clusters. On the other hand, if the attacker sticks to
its strategy, the defender would like to choose 25 replicas to
vote and increase the expected number of surviving clusters to
9.9998. Therefore, for both attacker and defender, their initial
strategies of attacking 8 out of 10 clusters and choosing 13
out of 25 replicas to vote is not optimal against each other.

In order to decide the optimal strategy in this example,
we set the probability of the defender taking the ith strategy
is xi, the probability of the attacker taking the jth strat-
egy is yj . After transforming the problem into the linear
programming problem, we solve this linear programming
problem by using simplex algorithm, and we have X =
Y = 8.7384, x = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , and
y = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , which indicates that the
fourth defense strategy is the defender’s optimal strategy, and
that is to choose 7 out of 25 replicas to vote, and the attacker’s
optimal strategy is the second strategy which is to attack 2 out

TABLE I: The result matrix for defender and attacker

h = 1 h=2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10
k = 1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
k = 3 8.748 8.6216 8.7621 8.8665 8.9417 8.9938 9.0322 9.066 9.0894 9.1076
k = 5 8.923 8.7326 9.0231 9.2195 9.3464 9.4248 9.478 9.5228 9.5514 9.5718
k = 7 8.9754 8.7384 9.1734 9.4364 9.5863 9.6671 9.7173 9.7574 9.781 9.7964
k = 9 8.992 8.7135 9.2868 9.5912 9.7407 9.8099 9.8493 9.8788 9.8951 9.9048
k = 11 8.9973 8.6785 9.3856 9.7081 9.8418 9.894 9.9215 9.9407 9.9508 9.9563
k = 13 8.9991 8.6389 9.4769 9.7971 9.9066 9.9425 9.9601 9.9716 9.9774 9.9803
k = 15 8.9997 8.5957 9.5629 9.8633 9.9467 9.9696 9.9802 9.9867 9.9898 9.9913
k = 17 8.9999 8.5482 9.6437 9.9111 9.9706 9.9843 9.9904 9.9939 9.9955 9.9962
k = 19 9 8.4949 9.7182 9.9441 9.9842 9.9921 9.9954 9.9972 9.998 9.9983
k = 21 9 8.433 9.7846 9.966 9.9918 9.9961 9.9979 9.9988 9.9991 9.9993
k = 23 9 8.357 9.8413 9.9799 9.9958 9.9981 9.999 9.9994 9.9996 9.9997
k = 25 9 8.2542 9.8873 9.9885 9.9979 9.9991 9.9996 9.9998 9.9998 9.9999

of 10 clusters. For this case, the expected number of surviving
clusters is 8.7384.

In order to show that their strategies are optimal against
each other, we will traverse all the defender’s strategies and
check whether a better defense strategy is available when the
attacker’s optimal strategy is fixed. The attacker’s optimal
strategy can also be checked in a similar way. Based on
the result table, we can see that when attacker chooses the
second strategy, that is h = 2, no better defense strategy for
defender is available, and when defender chooses the second
strategy, that is k = 7, no better attack strategy for attacker
is available, either. Therefore, for both attacker and defender,
their strategies are optimal against each other.

V. EXPERIMENTAL RESULTS

In this section, we describe three sets of experiments.
The first set of experiments is to investigate the relationship
between the defender’s optimal voting strategy, the number
of replicas in each cluster, and the total number of replicas
the attacker can compromise. The second set of experiments
shows the relationship between the defender’s optimal voting
strategy and a replica’s reliability. The third set of experiments
shows how the number of compromised replicas and replica’s
reliability affect the maximum number of surviving clusters.

For the first set of experiments, we assume that there are 10
clusters, the number of replicas in each cluster is 17, and the
reliability of each replica is 0.9. That is, we have n = 10, s =
17, p = 0.9. In addition, we assume the defender chooses odd
number of replicas to vote. When the total number of replicas
the attacker can compromise increases from 1 to 45, Figure 2a
shows the change of the optimal voting strategy.

In Figure 2a, the length of the bar indicates the probability
of the strategy the defender will take. For example, when m =
5, the optimal voting strategy is to choose k = 17 replicas to
vote because the length of the bar for that strategy is 1, and
the length of the bar for other strategies is 0.

When 1 ≤ m ≤ 7, the defender’s optimal strategy is to
choose all the replicas in the cluster to vote. This is because the
number of compromised replicas is smaller than the majority
in each cluster. For this case, according to equation 1 and
equation 2, no matter whether the cluster is attacked or not, the
more voters that are involved, means higher reliability for the

defender. Therefore, it is preferable to choose all the replicas
in the cluster to vote.

When 8 ≤ m ≤ 12, the optimal voting strategy changes dra-
matically. This is because the attacker attacks only one cluster
when m < 15 (this is shown in Figure 4a). Therefore, more
than half of replicas in that attacked cluster are compromised.
If the defender continues to choose all the replicas to vote,
the unattacked clusters will have the highest reliability, but the
reliability of that attacked cluster, is nevertheless, close to 0.
Therefore, the defender must choose a certain number of voters
to reach a balance between attacked cluster and unattacked
clusters.

However, when 13 ≤ m ≤ 15, the defender’s optimal
strategy is to choose all the replicas to vote, which indicates
that the gain of choosing a larger number of voters in the
unattacked clusters is larger than the loss of choosing a smaller
number of voters in the attacked cluster.

When m becomes larger (i.e., m > 15), the defender will
choose fewer replicas to vote. The reason lies in the fact that
the number of compromised replicas in the attacked clusters
are larger than the majority of the total number of replicas.
Although higher reliability will be obtained in the unattacked
clusters if more replicas are chosen to vote, the gain is smaller
than the loss in the attacked clusters. Therefore, the defender
shall choose a small number of replicas to vote.

A similar conclusion can be made for the case in which the
number of replicas in each cluster is s = 25, and the optimal
voting strategy is shown in Figure 2b. The main difference
between these two cases (that is, s = 17 and s = 25) is
the voting strategy change points. The main reason for the
difference lies in the fact that when s becomes larger, the
cluster can tolerate more component failures.

The second set of experiments is performed to investigate
the relationship between a defender’s optimal voting strategy
and replicas’ reliability. We also assume the defender will
choose an odd number of replicas to perform majority voting.
Here we set n = 10 and s = 25. The replicas’ reliability,
p, changes from 0.9, 0.7 to 0.4. The results are shown in
Figure 2b, Figure 3a, and Figure 3b, respectively. From these
results, we can see that when the replicas’ reliability is over
0.5, the optimal strategy changes with m. However, when the

(a) System configuration (n = 10, s = 17, p = 0.9) (b) System configuration (n = 10, s = 25, p = 0.9)

Fig. 2: The relationship between optimal voting strategy k and the total number of replicas m the attacker can compromise.

(a) System configuration (n = 10, s = 25, p = 0.7) (b) System configuration (n = 10, s = 25, p = 0.4)

Fig. 3: The relationship between optimal voting strategy k and the reliability of the replicas p.

(a) System configuration (n = 10, s = 17, p = 0.9) (b) System configuration (n = 10, s = 25, p = 0.9)

Fig. 4: The relationship between optimal attack strategy h and the total number of replicas m the attacker can compromise.

replicas’ reliability is under 0.5, the optimal voting strategy
is always to choose one replica to vote. This is because when
the replica’s reliability is under 0.5, the more replicas that
are involved, lowers the reliability in both the attacked and
unattacked clusters.

If there is no strategy whose probability is equal to 1
(see Figure 3a when m = 37), this indicates that there is
no deterministic strategy for the defender. For this case, the
defender can choose any voting strategy whose probability is
not equal to 0. However, in this case, the maximum number
of surviving clusters may not be obtained.

The third experiment shows the relationship between the
number of surviving clusters, the number of replicas the
attacker can compromise, and the replicas’ reliability. In this
experiment, we have n = 10, s = 25. Figure 5 shows
that the number of surviving clusters increases when the
replicas’ reliability increases, and the number of surviving
clusters decreases when the number of replicas the attacker
can compromise becomes larger. It is worth noting that when
the replicas’ reliability is under 0.5, the percentage between
the expected number of surviving clusters and the total number
of clusters is always under 50% even when m = 0. This
indicates that having more replicas in a voting scheme with
low reliability does not improve a cluster’s reliability.

Fig. 5: The relationship between the maximum number of
surviving clusters T , the replica’s reliability p, and the number
of compromised replicas m.

VI. CONCLUSION

For different voting algorithms, their fault-and-attack toler-
ance performance differs when the reliability of the replicas
and the number of compromised replicas change. In this paper,
we aimed to find the optimal number of participating voting
replicas in a majority voting scheme when the system is under
rational attacks. We began by providing the system model
and assumptions, then the voting problem was analyzed and
formulated. We also presented a solution to decide the optimal
number of voting replicas to maximize the expected number of

clusters that can produce a correct result under attack. Finally,
three sets of experiments are performed to investigate the
relationship between the voting strategy, the attacker strategy,
and the system reliability.

Moreover, in this paper, the replicas are assumed to be
homogeneous. For the future work, we will study the system
reliability when both replicas’ reliability and their voting
weights are heterogeneous, which indicates that we will decide
how many replicas should be chosen from two different replica
groups in the cluster to maximize the number of surviving
clusters.

REFERENCES

[1] V. M. Bier, A. Nagaraj, and V. Abhichandani. Protection of simple series
and parallel systems with components of different values. Reliability
Engineering & System Safety, 87(3):315 – 323, 2005.

[2] J. J. Bloch, D. S. Daniels, and A. Z. Spector. A weighted voting
algorithm for replicated directories. J. ACM, 34:859–909, Oct. 1987.

[3] L. Chen and A. Avizienis. N-version programming: A fault-tolerance
approach to reliability of software operation. In Digest of Papers FTCS-
8: Eighth Annual International Conference on Fault Tolerant Computing,
pages 3 – 9, June 1978.

[4] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[5] D. Davcev. A dynamic voting scheme in distributed systems. Software
Engineering, IEEE Transactions on, 15(1):93 –97, Jan. 1989.

[6] D. E. Eckhardt and L. D. Lee. Fundamental differences in the reliability
of n-modular redundancy and redundancy and n-version programming.
J. Syst. Softw., 8(4):313–318, 1988.

[7] S. I. Gass. Linear programming: methods and applications (5th ed.).
McGraw-Hill, Inc., New York, NY, USA, 1984.

[8] D. K. Gifford. Weighted voting for replicated data. In Proceedings of
the seventh ACM symposium on Operating systems principles, SOSP
’79, pages 150–162, New York, NY, USA, 1979. ACM.

[9] B. Hardekopf, K. Kwiat, and S. Upadhyaya. A decentralized voting algo-
rithm for increasing dependability in distributed systems. In 5th World
Multiconference on Systemic, Cybernetics and Informatics (SCI2001,
2001.

[10] H. Kuhn and A. Tucker. Contributions to the Theory of Game, volume 1.
Princeton University Press, 1950.

[11] K. Kwiat, A. Taylor, W. Zwicker, D. Hill, S. Wetzonis, and S. Ren.
Analysis of binary voting algorithms for use in fault-tolerant and secure
computing. In Computer Engineering and Systems (ICCES), 2010
International Conference on, pages 269 –273, 2010.

[12] G. Latif-Shabgahi, J. Bass, and S. Bennett. A taxonomy for software
voting algorithms used in safety-critical systems. Reliability, IEEE
Transactions on, 53(3):319 – 328, Sep. 2004.

[13] G. Levitin. Optimal multilevel protection in series-parallel systems.
Reliability Engineering & System Safety, 81(1):93 – 102, 2003.

[14] G. Levitin, Y. Dai, M. Xie, and K. L. Poh. Optimizing survivability
of multi-state systems with multi-level protection by multi-processor
genetic algorithm. Reliability Engineering & System Safety, 82(1):93 –
104, 2003.

[15] G. Levitin and K. Hausken. Protection vs. redundancy in homogeneous
parallel systems. Reliability Engineering & System Safety, 93(10):1444
– 1451, 2008.

[16] G. Levitin and K. Hausken. False targets efficiency in defense strat-
egy. European Journal of Operational Research, 194(1):155–162, April
2009.

[17] G. Levitin and K. Hausken. Redundancy vs. protection vs. false targets
for systems under attack. Reliability, IEEE Transactions on, 58(1):58
–68, March 2009.

[18] G. Levitin and A. Lisnianski. Optimal separation of elements in
vulnerable multi-state systems. Reliability Engineering & System Safety,
73(1):55 – 66, 2001.

[19] G. Levitin and A. Lisnianski. Optimizing survivability of vulnerable
series-parallel multi-state systems. Reliability Engineering & System
Safety, 79(3):319 – 331, 2003.

[20] L. Mancini and M. Koutny. Formal specification of n-modular redun-
dancy. In CSC ’86: Proceedings of the 1986 ACM fourteenth annual
conference on Computer science, pages 199–204, 1986.

[21] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel. Time-
to-compromise model for cyber risk reduction estimation. In First
Workshop on Quality of Protection, 2005.

[22] M. A. McQueen, W. F. Boyer, M. A. Flynn, and G. A. Beitel. Time-
to-compromise model for cyber risk reduction estimation. Quality of
Protection, 23:49–64, 2006.

[23] J. V. Neumann. Zur theorie der gesellschaftsspiele. Mathematische
Annalen, 100(1):295–320, 1928.

[24] L. Nordmann and H. Pham. Weighted voting systems. Reliability, IEEE
Transactions on, 48(1):42 –49, March 1999.

[25] T. Raghavan. Zero-sum two-person games. In R. Aumann and
S. Hart, editors, Handbook of Game Theory with Economic Applications,
volume 2, pages 735–768. Elsevier, May 1994.

[26] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. Database Syst., 4:180–209,
June 1979.

[27] Z. Tong and R. Kain. Vote assignments in weighted voting mechanisms.
Computers, IEEE Transactions on, 40(5):664 –667, May 1991.

[28] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, second edition, 2001.

[29] L. Wang, Y. Leiferman, S. Ren, K. Kwiat, and X. Li. Improving complex
distributed software system availability through information hiding. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 452–456, New York, NY, USA, 2010. ACM.

[30] L. Wang, S. Ren, K. Yue, and K. Kwiat. Optimal resource allocation for
protecting system availability against random cyber attacks. In Computer
Research and Development (ICCRD), 2011 3rd International Conference
on, volume 1, pages 477 –482, March 2011.

[31] P. Zafra. Linear Programming and Two-Person Zero-Sum Games. Wiley
Encyclopedia of Operations Research and Management Science, Feb.
2011.

