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Real-time systems are systems in which their timing behaviors must satisfy a specified set of timing con-
straints and they often operate in a real-world environment with scarce resources. As a result, the actual
runtime performance of these systems may deviate from the design, either inevitably due to unpredictable
factors or by intention in order to improve system’s other Quality-of-Service (QoS) properties. In this article,
we first introduce a new metric, timing constraint set similarity, to quantify the resemblance between two
different timing constraint sets. Because directly calculating the exact value of the metric involves calculat-
ing the size of a polytope which is a #P-hard problem, we instead introduce an efficient method for estimating
its bound. We further illustrate how this metric can be exploited for improving system predictability and for
evaluating trade-offs between timing constraint compromises and the system’s other QoS property gains.
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1. INTRODUCTION

Software for real-world systems often operates in an unpredictable environment and
interacts with physical machineries. Hence, for most of these software systems, it is
difficult and unrealistic to implement them in such a way that they behave precisely
as specified due to the following facts.

— System Complexity. The ever-increasing complexities of software systems have made
guarantees of exact system behavior impractically expensive, if not impossible. For
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example, advances in computer architecture and software have made it difficult to
predict the execution time of software, and networking techniques further introduce
variability and stochastic behavior into the system [Lee 2005].

— Unpredictable Operating Environment. The intrinsically unpredictable nature of
the environments in which software systems operate determines that even though
software operates precisely as designed, its interactions with the outer world may
not be totally expected. For example, Jackson et al. have shown that several aircraft
accidents have been attributed to “mode confusion,” where the software operated as
designed but not as expected by the pilots [Jackson et al. 2007].

— Computational Intractability. From a theoretical point of view, achieving exactness
in the verification of system properties is sometimes intractable. For example, Alur
and Dill have shown that the satisfiability of a very simple class of real-time prop-
erties such as “every p-state is followed by a q-state precisely 5 time units later”
turns out to be undecidable in a continuous-time model [Alur and Dill 1994]. Al-
though several real-time logics are decidable under discrete approximations of real
time [Alur and Henzinger 1989] or under interval timing constraints [Alur et al.
1991], these models unfortunately prohibit infinite precision.

On the other hand, real-time and embedded systems often face trade-offs between
time and QoS under limited resources. Therefore, even if a system can be imple-
mented precisely as specified, relaxing some of the specifications may reduce resource
consumptions: for hard real-time systems, all timeliness requirements must be met
and thus optimizing other properties such as minimizing energy consumption must
not violate timing constraints; for soft real-time systems, on the other hand, the
requirement for timing constraint satisfaction guarantees is not as stringent. Such
timing flexibility allowed by soft real-time systems can often be utilized to improve
the system’s other QoS properties, such as reducing total energy consumption. A
challenging task in investigating the trade-offs between timing constraint satisfac-
tion and other QoS properties is how to quantify the degree of timing constraint
satisfaction. That is, how do we measure the level of satisfaction for some given
timing behavior with respect to a set of timing constraints? Another closely related
challenge is to determine which timing constraints to be relaxed and by how much in
order to achieve certain other QoS gains, for example, energy consumption reduction.
Though some researchers have studied problems that are somewhat related to the
preceding problems (to be discussed in the next section), we contend that there exists
no systematic approach for tackling these challenges.

In this article, we propose a framework for measuring timing constraint satisfaction
which can be used to address the previous challenges. Specifically, we introduce a novel
metric, that is, timing constraint set similarity, to capture the resemblance between
two timing constraint sets. It is defined in terms of the common feasible region of two
systems constrained by the two given timing constraint sets. This value reflects the
probability of timing constraint satisfaction when the original timing constraints are
violated or intentionally modified for improving QoS properties.

However, directly calculating the exact value of similarity between two sets of tim-
ing constraints is computationally intractable. To overcome this difficulty, we leverage
the concept of similarity bound and derive a closed-form formula for computing a tight
similarity bound. This bound can be used to guide the design process and provide
confidence guarantees on certain QoS properties.

To show how one may use the timing constraint similarity metric to predict real-
world performances and guide design processes of real-time embedded systems, we:

(1) give a detailed design example in which a set of soft real-time tasks are executed
on a multiprocessor system-on-chip (MPSoC) and the goal is to trade timing
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constraint satisfaction for reducing energy consumption. This concrete example
serves as a demonstration that the similarity metric provides an effective tool to
measure and guide the trade-offs between different QoS properties;

(2) study the similarities between timing constraint sets in the specification of an
object tracking system and its real-world deviation, and use the similarity to infer
the relationships on properties, such as tracking precisions, fulfilled by different
but similar systems.

The rest of this article is organized as follows. The next section provides a motivat-
ing example and reviews related work. Section 3 introduces the timing constraint set
feasible region and its normal form. It is used to establish the constraint similarity
metric. Section 4 presents the similarity metric that quantifies how much one set of
timing constraints resembles another. Section 5 studies how the theory of timing con-
straint similarities can be utilized to reduce the total energy consumption of an MPSoC
system with minimal changes to the satisfaction of original timing constraints. Sec-
tion 6 applies the theory of timing constraint similarities to an object tracking system
for predicting tracking error rates. Finally, we conclude and point out future work in
Section 7.

2. MOTIVATION AND RELATED WORK

For a given specification, there may be different designs and implementations. Due
to specification abstractions, often times, none of the implementations precisely satis-
fies the required timing constraints, especially in soft real-time systems. Hence, it is
important to have a scheme that measures the level at which an implemented system
satisfies the specified constraints. In addition, it allows studies of “what if” scenarios
where certain timing constraints are relaxed to some extent in order to improve other
QoS properties. Furthermore, it can be used to judiciously decide design specifications.

One intuitive way to quantify the level of timing constraint satisfaction is to mea-
sure the probability with which a system satisfying a set of modified timing constraints
still satisfies the original timing constraints. With such a probability, design alterna-
tives with different timing behavior can be easily compared. We use a simple example
to illustrate this point.

Example 1. Consider scheduling a task j with a relative deadline of 22ms on an
MPSoC with three cores m1, m2, and m3. The worst-case execution times (WCETs)
of j on m1, m2, and m3 are 20ms, 25ms, and 30ms with peak powers 10W, 7W, and
6W, respectively. For simplicity, we also assume that the actual execution times are
uniformly distributed between 5ms and respective WCETs. Now, if we need to limit
the peak power to be less than 8W, but allow some deadline misses, we can schedule
the task on either m2 or m3. If we schedule the task on m2, for instance, what we can
guarantee is the satisfaction of a constraint with a relative deadline of 25ms, rather
than 22ms. Similarly, with the task on m3, we can guarantee the satisfaction of a
deadline of 30ms. In other words, in this example, to maintain the peak power below
8W, we have two different approaches. Now, the question is from timing perspective,
which one is a better option?

If task j is executed on m2, the probability of the system satisfying the original
timing constraint of 22ms is 22−5

25−5 = 85%. The probability reduces to 22−5
30−5 = 68% if task

j is executed on m3. So for this simple example, the answer to the preceding question
is obvious. That is, from the timing perspective, using m2 is better than m3. Note that
this conclusion coincides with the intuition that 25ms is “closer” to 22ms than 30ms.
However, this may not always be true; one could easily see this by considering the
extreme case where the best-case execution time of j on m2 is greater than 22ms.
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From the previous simple example, one can see that the probability with which a
system satisfying a set of modified timing constraints still satisfies the original timing
constraints can be used effectively to compare design alternatives with different tim-
ing behaviors. Now the challenge is how to measure such a probability when there are
more complex timing constraints involved. Furthermore, given the timing constraint
satisfaction as one of the system comparison criteria, how can we find a subset of con-
straints from a given constraint set and modify them so that the required nontiming
properties (e.g., power consumption) are satisfied, but the timing property change is
minimal, in other words, the timing property is the most similar (closest) to the original
one? The goal of this article is to address these questions by introducing a new metric.

As related work, many researchers have studied feasibility probabilities for tasks
with varying execution times. Tia et al. [1995] propose a way to find the probability
of a single task meeting its timing constraint, referred to as task feasibility proba-
bility. Kalavade and Moghé [1998] present an approach to compute the probability of
any single task delay exceeding its deadline, which is equivalent to the task feasibility
probability. However, Hu et al. [2001] point out that the probability of each individual
task meeting its timing constraint is not sufficient in several situations since there
often exists strong correlation among events of tasks meeting their deadlines. The au-
thors give a new metric that considers the overall system probabilistic behavior where
tasks have their individual deadlines and the correlations between tasks are captured
by precedence constraints. With this metric in the system-level design exploration
process, one can readily compare the probabilistic timing performance of alternative
designs. Based on Hu et al. [2001], Wang et al. [2007] define a design metric called
performance yield, which is the probability of the assigned schedule meeting the pre-
defined performance constraints. However, none of these works considers the problem
of measuring the level of timing constraint satisfaction when the original timing con-
straints cannot be satisfied or are intentionally modified.

In general cases, real-time systems have various types of timing constraints such as
freshness, correlation, and output separation [Gerber et al. 1995]. Our study focuses on
a more generalized constraint model where correlations between tasks are treated as
linear timing constraints. As can be seen, the correlations between individual timing
constraints are not as simple as precedence constraints; instead, they are captured
by the feasible region of the entire set of timing constraints. We study the similarity
relation between feasible regions of two different timing constraint sets and use the
similarity value to infer constraint satisfaction probability of a system that satisfies
one set of timing constraints satisfies the other.

Throughout our study, we assume that the feasible region of any timing constraint
set is not empty, that is, the timing constraint set is feasible. It is well-known that
the absence of negative cycles in a timing constraint graph implies the feasibility of
the corresponding real-time constraint set [Raju et al. 1992]. When a set of real-time
constraint is infeasible, the constraint set is debugged by freeing the corresponding
constraint graph from all its negative cycles. Some algorithms for this task take time
proportional to the number of negative cycles in the graph, which can grow exponen-
tially [Dasdan 1999; Liao and Wong 1983]; Dasdan [2002a, 2002b, 2009] provides an al-
gorithm whose time complexity is polynomial in the size of the input constraint graph.

Many notions on similarities have been defined in the literature for process mod-
els. Gupta et al. [2004] give a pseudometric analog of bisimulation for generalized
semi-Markov processes and show that two metrically similar processes have simi-
lar observable quantitative properties. Thorsley and Klavins [2008] use Wasserstein
pseudometrics to quantify the similarities between stochastic processes and introduce
an algorithm to approximate the pseudometrics directly from sampled data rather
than from process models themselves. The notion of similarity on other models are
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also studied, for example, in de Alfaro et al. [2007], Song et al. [2007], and Julius et al.
[2006]. However, the pseudometrics proposed in these works are used to compare
processes. Though there are similarities between the idea of introducing quantitative
metrics to measure two nonequivalent processes or constraints, the metrics introduced
in this article not only measure the resemblance between two sets of timing constrains,
but also provide quantitative design guidance in deciding the trade-offs between con-
straint satisfaction and other QoS properties.

Trading one QoS property for another has been studied in various contexts. For
example, reducing energy consumption through compromising system performance
has been considered in a wide spectrum of computing. To name a few, Moscibroda et al.
discuss the trade-off between energy efficiency and rapidity of event dissemination in
ad hoc and sensor networks [Moscibroda et al. 2006]; in high-performance computing,
Feng et al. analyzed NAS and SPEC suites to determine the relationship between
frequency and voltage settings and execution time, and show that a significant
decrease in energy is possible with a small increase in time [Pan et al. 2005]. In
fact, for real-time and embedded systems, dynamic voltage scaling techniques, which
reduce system supply voltage for lower operation frequencies, has been extensively
used in various power management schemes [Aydin et al. 2001; Pillai and Shin
2001; Saewong and Rajkumar 2003]. However, to our best knowledge, there is no
quantitative study of trading timing constraint satisfaction in soft real-time systems
for other QoS properties.

3. TIMING CONSTRAINT SET NORMAL FORM

In this section, we introduce the geometric foundations for characterizing timing con-
straint sets. The constraint normal form defined in this section will be used to establish
constraint similarity metrics in Section 4.

In our system model, we take a commonly used approach in that system behaviors
(or computations) are represented as data streams, that is, a sequence of event occur-
rences (e1, e2, . . . , en) [Woo et al. 2006], and a timed data stream is formed by pairing
each event ei with its corresponding occurrence time t(ei), as defined next [Arbab and
Rutten 2002].

Definition 3.1 (Timed Data Stream). A Timed Data Stream (TDS) is a sequence(
(e1, t(e1)), (e2, t(e2)), . . . , (en, t(en))

)
where (t(e1), t(e2), . . . , t(en)) is a monotonically in-

creasing sequence with elements in �+ ∪ {+∞}. Geometrically, a TDS is represented
as a point in |E|-dimensional space where each axis represents an event and the pro-
jection of the point on the axis represents the occurrence time of the corresponding
event.

Without timing constraints, events can occur at any time instances and thus the
set of all TDS’s occupies the entire nonnegative portion of the |E|-dimensional space.
However, when a set of timing constraints of the form t(ei) − t(e j) ≤ d(d ∈ �+ ∪ {+∞})
exists, the set of TDS’s satisfying the set of timing constraints is only a convex region in
the |E|-dimensional space and we call it feasible region throughout the article. Feasible
regions are the key in comparing timing constraint sets and we illustrate them in
Examples 2 and 3.

Example 2 (2-Dimensional Feasible Region). Let sj and f j be the events that task j
starts and finishes, the feasible region of the relative deadline constraint 0 < t( f j) −
t(sj) ≤ 22 in Example 1 is shown in Figure 1 (shaded area).

In the figure, TDS ((sj, 20), ( f j, 38)) in the feasible region satisfies the relative dead-
line constraint, while TDS’s (( f j, 16), (sj, 28)) and ((sj, 8), ( f j, 40)) outside the feasible
region violate causality t(sj) − t( f j) < 0 and deadline t( f j) − t(sj) ≤ 22, respectively.
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Fig. 1. The feasible region of constraint 0ms < t(f j) − t(sj) ≤ 22ms.

Fig. 2. The feasible region of a constraint set (1).

The dimension of feasible regions becomes higher when the number of constrained
events increases. Consider the following example.

Example 3 (3-Dimensional Feasible Region). Let the set of timing constraints that
specify the relative time spans among three events be{

t(e1) − t(e2) ≤ 6, t(e2) − t(e1) ≤ 6, t(e1) − t(e3) ≤ 7,

t(e3) − t(e1) ≤ 3, t(e2) − t(e3) ≤ 9, t(e3) − t(e2) ≤ 14

}
(1)

Each timing constraint confines a half space in the 3-dimensional space and the inter-
section of such half spaces is the feasible region. The feasible region of (1) is shown in
Figure 2 with its boundaries marked as bold lines.

In the figure, the pentagonal prism circumscribed by all but the plane representing
the constraint t(e3) − t(e2) ≤ 14 characterizes the feasible region, that is, each point
(t(e1), t(e2), t(e3)) in the region satisfies constraint set (1).

From Examples 2 and 3, we can see that a feasible region characterizes all valid
execution time traces, that is, a system’s valid timing behaviors under a set of tim-
ing constraints. However, when the dimension of a feasible region becomes higher,
its shape becomes more complex and makes the graphical representation difficult. In
order to compare feasible regions, alternative ways to represent high-dimensional fea-
sible regions are needed.

We introduce an algebraic representation to describe feasible regions such that
comparisons can be directly made between feasible regions. This representation
builds on the concept of the most stringent constraints, which we explain next by
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using Example 3 again. Examine the feasible region of Example 3 shown in Figure 2.
Note that the shape of the feasible region of (1) does not change when the constraint
t(e3) − t(e2) ≤ 14 is changed to t(e3) − t(e2) ≤ 9 (or any other constraint value larger
than 9). In fact, t(e3) − t(e2) ≤ 9 is the most stringent timing constraints between event
e3 and e2 which can be implied by the given constraint set.

For a given set of timing constraints, we can find the most stringent constraint set by
leveraging the approach of finding all-pairs shortest paths. Specifically, we construct
a constraint graph G by defining the vertex set of G as the set of events in the timing
constraint set; for every two vertices ei, e j in G, there is an edge from ei to e j with
weight d if there is a constraint t(ei) − t(e j) ≤ d. The most stringent timing constraint
implied by the given constraint set between every pair of events, t(ei) − t(e j) ≤ d∗

i, j, can
hence be derived from applying the Floyd-Warshall all-pairs shortest paths algorithm
on G [Jahanian and Mok 1987]. The most stringent constraint set has an important
property which is summarized in Lemma 3.2. It states that the feasible region of a
set of real-time constraints does not change when constraints between all event pairs
are replaced by the corresponding most stringent constraints derived from the Floyd-
Warshall algorithm.

LEMMA 3.2. Given a set of m timing constraints of the form t(ei)− t(e j) ≤ dk among n

events, At ≤ d, where A is an m×n matrix, t =
[

t(e1) . . . t(en)
]T

, and d =
[

d1 . . . dm

]T
.

We have
{
t
∣∣At ≤ d

}
=

{
t
∣∣∣Ãt ≤ d̃

}
, that is, the set of solutions of At ≤ d is the same as

the set of solutions of Ãt ≤ d̃ where

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

1 −1
...

. . .

1 −1

−1 1

1 −1
...

. . .

1 −1
... · · · ...

−1 1

−1 1
. . .

...

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and d̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d∗
1,2

d∗
1,3
...

d∗
1,n

d∗
2,1

d∗
2,3
...

d∗
2,n

...

d∗
n,1

d∗
n,2
...

d∗
n,n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

that is, Ã is the incidence matrix of the corresponding complete graph of the timing con-
straint graph of At ≤ d, and d∗

i, j, i �= j is the shortest path weight between t(ei) and t(e j).

PROOF.

(i)
{
t
∣∣At ≤ d

} ⊇
{
t
∣∣∣Ãt ≤ d̃

}
This directly follows from the fact that A contains some rows of Ã and the corre-
sponding d’s in d is no less than those in d̃ (the shortest path weights).
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(ii)
{
t
∣∣At ≤ d

} ⊆
{
t
∣∣∣Ãt ≤ d̃

}
Assume to the contrary that there is a vector t′ =

[
t1 . . . tn

]T
such that t′ ∈{

t
∣∣At ≤ d

} ∧ t′ /∈
{
t
∣∣∣Ãt ≤ d̃

}
. This implies that the following set of linear in-

equalities has no solution. ⎡⎢⎣ I
−I
Ã

⎤⎥⎦ t ≤
⎡⎢⎣ t′

−t′

d̃

⎤⎥⎦ (3)

Based on Farkas’ lemma1 [Fang and Puthebnpura 1993], together with the infeasibil-

ity of (3), we have that there exists an (n2 + n)-vector
[

tT
1 tT

2 tT
3

]T
where t1 and t2 are

two n-vector and tT
3 is a (n2 − n)-vector, such that (4), (5), and (6) hold.

[
I −I ÃT

]⎡⎢⎣ t1

t2

t3

⎤⎥⎦ = 0 (4)

⎡⎢⎣ t1

t2

t3

⎤⎥⎦ ≥ 0 (5)

[
t′T −t′T d̃T

]⎡⎢⎣ t1

t2

t3

⎤⎥⎦ < 0 (6)

From (4) we have that

t1 − t2 = −ÃTt3. (7)

Insert (7) into (6) we have that

−t′TÃTt3 + d̃Tt3 =
(
d̃T − t′TÃT

)
t3 < 0. (8)

Therefore, it must be that
∃i, j : d∗

i, j < ti − tj, (9)

since otherwise d̃T −t′TÃT ≥ 0 together with (5) would imply
(
d̃T − t′TÃT

)
t3 ≥ 0 which

contradicts (8). However, (9) contradicts the fact that d∗
i, j is the optimal solution to the

linear program
maximize t(ei) − t(e j)
subject to At ≤ d

(10)

1Farkas’ lemma: let A be a matrix and x and b vectors. Then the system Ax = b, x ≥ 0 has no solution iff
the system ATy ≥ 0, bTy < 0 has a solution, where y is a vector.
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that is, d∗
i, j is the shortest path weight. Therefore, we have

{
t
∣∣At ≤ d

} ⊆
{
t
∣∣∣Ãt ≤ d̃

}
and thus

{
t
∣∣At ≤ d

}
=

{
t
∣∣∣Ãt ≤ d̃

}
.

An important implication of Lemma 3.2 is that the shape of the feasible region is
determined solely by the most stringent timing constraints between all pairs of events.
In fact, given two sets of real-time constraints C (At ≤ d) and C′ (A′t ≤ d′) on the same
set of events, along with their all-pairs shortest paths matrices D∗ and D′∗, respec-
tively, it is easy to see that Ã is the same for C and C′ since Ã is the incident matrix of
the complete timing constraint graphs. Moreover, we have the following.

D∗ = D′∗ ⇔
{
t
∣∣∣Ãt ≤ d̃

}
=

{
t
∣∣∣Ãt ≤ d̃′

}
⇔ (Lemma 3.2)

{
t
∣∣At ≤ d

}
=

{
t
∣∣A′t ≤ d′ }

⇔ feasible regions of C and C′ are identical

In other words, there is a one-to-one correspondence between an all-pairs shortest
paths matrix of a timing constraint set and its feasible region. Therefore, the con-
straint matrix that represents the most stringent constraints among all pairs of events
uniquely characterizes the shape of the feasible region. We define this as the normal
form of the constraint set.

Definition 3.3 (Constraint Set Normal Form). Given a timing constraint set C and
the corresponding constraint graph G, its all-pairs shortest paths matrix, denoted as
D∗, where

D∗ =

⎡⎢⎢⎢⎢⎢⎣
0 d∗

1,2 · · · d∗
1,n

d∗
2,1 0 · · · d∗

2,n
...

...
. . .

...

d∗
n,1 d∗

n,2 · · · 0

⎤⎥⎥⎥⎥⎥⎦ (11)

and d∗
i, j is the shortest path weight between t(ei) and t(e j) in the constraint graph G. D∗

is called constraint set C’s normal form.

The timing constraint set normal form bridges the geometric problem of a feasible
region and their corresponding algebraic problem of linear inequalities. We can hence
derive the relationship between feasible regions of two different constraint sets, such
as inclusion, by studying the relationship between their normal forms.

THEOREM 3.4. Given two sets of real-time constraints C = At ≤ d and C′ = A′t ≤
d′ on the same set of events2. Let their corresponding normal forms be D∗ and D′∗,
respectively. The feasible region of C′ is included within that of C if and only if D∗ ≥ D′∗,
that is, ∀i, j : d∗

i, j ≥ d′∗
i, j.

PROOF. Note that the feasible region of A′t ≤ d′ is included in that of At ≤ d iff the
feasible region of

[
A
A′

]
t ≤

[
d
d′

]
is same as that of A′t ≤ d′. Hence, we can instead prove

that the feasible regions of
[

A
A′

]
t ≤

[
d
d′

]
and A′t ≤ d′ are the same iff D∗ ≥ D′∗. In

2Note that the event sets of the two constraint sets need not be the same in order for the two feasible regions
to be comparable. One can always extend both event sets to the same one by adding unconstrained events.
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the following, for a constraint normal form D∗, we use its equivalent system of linear
inequalities representation Ãt ≤ d̃ where Ã and d̃ are defined in (2).

(i) D∗ ≥ D′∗ ⇒ C includes C′: Suppose we have D∗ ≥ D′∗, that is, d̃ ≥ d̃′, it is not
hard to see that

[
Ã
Ã

]
t ≤

[
d̃
d̃′

]
has the same feasible region as Ãt ≤ d̃′. Then, from

Lemma 3.2,
[

A
A′

]
t ≤

[
d
d′

]
has the same feasible region as A′t ≤ d′.

(ii) C includes C′ ⇒ D∗ ≥ D′∗: If
[

A
A′

]
t ≤

[
d
d′

]
has the same feasible region as A′t ≤ d′,

then from Lemma 3.2,
[

Ã
Ã

]
t ≤

[
d̃
d̃′

]
has the same feasible region as Ã′t ≤ d̃′. To

prove the necessary condition, we should have D∗ ≥ D′∗, that is, d̃ ≥ d̃′. Assume
to the contrary that there is some d∗

i, j in d̃ and d′∗
i, j in d̃′ such that d∗

i, j < d′∗
i, j. Since

d′∗
i, j is the optimal solution to the linear program

maximize t(ei) − t(e j)
subject to Ãt ≤ d̃′ (12)

and thus the optimal solution to the linear program (13)

maximize t(ei) − t(e j)

subject to

[
Ã
Ã

]
t ≤

[
d̃
d̃′

]
.

(13)

However, the optimal solution to (13) can be at most d∗
i, j when the solution set of

[
Ã
Ã

]
t ≤[

d̃
d̃′

]
is not empty. The contradiction implies that D∗ ≥ D′∗.

From the preceding discussions, we can see that the constraint normal form bridges
the geometric problem of a feasible region and their corresponding algebraic problem
of linear inequalities and can serve as the algebraic representation that we stated
earlier in this section. We can hence derive the similarity relationship between feasible
regions of two different constraint sets by studying the constraint normal forms.

4. SIMILARITIES BETWEEN TIMING CONSTRAINT SETS

As discussed in Section 1, actual runtime performance of soft real-time systems may
deviate from their initial designs, either inevitably due to unpredictable factors or by
intention to improve system’s other Quality-of-Service (QoS) properties. It is hence
important to know quantitatively how much the timing behavior compromise is in
these cases.

4.1 Similarities between Constraint Sets

In this section, we focus on quantifying timing behavior similarities and we base our
model on the feasible regions of timing constraint sets discussed in Section 3. The
following example of the similarities between feasible regions in 2 and 3 dimensions
gives the intuition. Note that in the following discussions, for simplicity, we assume
that event occurrence times allowed by a set of constraints are uniformly distributed
in the feasible region of the constraint set.
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Fig. 3. The feasible regions satisfying constraint 0 < t( f j) − t(sj) ≤ 22 and 0 < t( f j) − t(sj) ≤ 25.

Fig. 4. The feasible regions satisfying constraint sets (1) (bold lines) and (14) (light lines), and their inter-
section (the shaded region).

Example 4 (Feasible Region Similarity). In Example 1, the original constraint was
0 < t( f j) − t(sj) ≤ 22 and the relaxed one is 0 < t( f j) − t(sj) ≤ 25. The relationship
between the two corresponding feasible regions is depicted in Figure 3.

As can be seen from the figure, timed data stream (
(
sj, 20

)
,
(

f j, 38
)
) satisfies both

constraint sets while (
(
sj, 8

)
,
(

f j, 32
)
) satisfies only the relaxed deadline. In fact, the

common area of the two feasible regions occupies 22
25 = 88% of that of the relaxed

deadline 25ms.
Advancing to 3-dimensional feasible regions, consider the feasible region of the fol-

lowing timing constraint set that has three events.{
t(e1) − t(e2) ≤ 5, t(e2) − t(e1) ≤ 7, t(e1) − t(e3) ≤ 5,

t(e3) − t(e1) ≤ 2, t(e2) − t(e3) ≤ 10, t(e3) − t(e2) ≤ 5

}
(14)

The relationship between feasible regions satisfying constraint sets (1) and (14)
is illustrated in Figure 4, where bold lines, light lines, and the shaded region rep-
resent constraint sets (1), (14), and the intersection between their feasible regions,
respectively.

From Figure 4, we can see that although feasible regions satisfying constraint sets
(1) and (14) are not identical, they share some common region. Hence, we can expect
that they have some timing behaviors in common.

Generalizing the previous discussions, we define the similarity between two timing
constraint sets as the following.

Definition 4.1 (Constraint Set Similarity). Let vol(C) denote the volume of the fea-
sible region of a timing constraint set C. Given two timing constraint sets C and C′,
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the similarity relation is defined as C ∼ C′ = vol(C∩)
vol(C′) , where C∩ is the intersection of C

and C′.

Intuitively, if C ∼ C′ = P%, that is, the intersection of the feasible regions of con-
straint sets C and C′ occupies P% of the feasible region of C′, we know that P% of all
the timed data streams satisfying C′ satisfies C. Therefore, system satisfying C′ will
have a P% guarantee of satisfying C. Unfortunately, directly calculating the similar-
ity between two sets of complete timing constraints is difficult. In fact, calculating the
size of a polytope formed by a set of linear inequalities (vol(C) in our context) has been
shown to be #P-hard [Dyer and Frieze 1988], and thus directly calculating the propor-
tions of the intersection in any of the feasible regions, that is, the similarity metric,
by comparing their sizes is costly. To overcome the computational impediment of eval-
uating directly the constraint set similarity between two constraint sets, we resort to
finding a lower bound on the constraint set similarity that is easily computable. The
following theorem defines such a bound.

THEOREM 4.2. Given two timing constraint sets C and C′, and corresponding nor-
mal forms be D∗ and D′∗, respectively. If the feasible region of C′ is not included in that
of C, that is, D∗ � D′∗, then the similarity is bounded by⎛⎜⎝ inf

i, j=1,...,n,
i�= j, d∗

i, j≤d′∗
i, j

{
d∗

i, j

d′∗
i, j

}⎞⎟⎠
|E|−1

≤ C ∼ C′ < 1, (15)

where |E| is the cardinality of the event set being constrained, d∗
i, j and d′∗

i, j are the cor-
responding entries in D∗ and D′∗, respectively. The similarity reaches upper bound 1
when feasible region of C′ is included in that of C, that is, D∗ ≥ D′∗.

PROOF PRELIMINARY. Before giving the formal proof for the theorem, we briefly
introduce some background in computing volumes of high-dimension polytopes.
In Lawrence [1991], Lawrence gives an algorithm for computing polytope volume
based on a combinatorial form of Gram’s relation. A convex polytope P is given as

P =
{
x ∈ �n : x ≥ 0, Ax ≤ b

}
, (16)

where A is an m×n matrix and b is a column vector in �m which has only nonnegative
entries. If P is a simple (or nondegenerate)3 polytope, then the volume of P can be
derived by extracting parameters from basic feasible tableaux for the following linear
programming problem

maximize f (x)
subject to Ax ≤ b, x ≥ 0,

(17)

3An n-dimensional simple (or nondegenerate) polytope is a polytope where each vertex is the intersection of
exactly n hyperplanes (defined by n of the m inequalities in (16) with ≤ replaced by =). This requirement is
inherited from vertex enumeration algorithms used in the volume computation algorithm. Although feasible
regions in this article are sometimes not nondegenerate, the requirement can be dropped by perturbing the
auxiliary hyperplanes by a very small amount and the same result holds.
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Fig. 5. Fixing t(e3) at 5 in (14) can be interpreted as using the plane t(e3) = 5 to cut the feasible region of
(14) in Figure 4 and view the slice in the x1x2 (t(e1)t(e2)) plane.

where f (x) = ctx + d can be any function that is not constant on any one of the
hyperplanes defining P. The volume of P, denoted as vol(P), is thus computed
as [Lawrence 1991]

vol(P) =
∑

all vertices v of P

1
n!

1
δv

d̃n

γi1 · · · γin
, (18)

where δv is the cumulative product of the pivot elements, γi1 , · · · , γin are the nonbasic
feasible solutions, and d̃ is the value of the objective function. The pivot elements,
nonbasic feasible solutions, and the values of the objective function can all be retrieved
from the basic feasible tableaux for (17).

To apply the volume computation algorithm in our setting, the following issues
need to be addressed.

(1) As can be seen in Figure 2, the feasible region formed by the intersections of half
spaces corresponding to timing constraints is not bounded. We need to find a way
to bound the feasible region.

(2) The volume computation algorithm crucially relies upon simplex-pivoting-based
vertex enumeration algorithms. However, McMullen and Shepard [1971] have
shown that the maximum number of vertices a polytope defined by m inequalities
on n nonnegative variables can have is

(
m+�n/2�

m

)
+

(
m+�n/2�+1

m

)
. Therefore, in (18),

summing for “all vertices v of P” generally has exponential cost. In fact, Dyer and
Frieze [1988] have shown that computing vol(P) is #P-hard. Therefore, in our
context, directly calculating the proportion of the intersection in any of the feasible
regions by comparing the volumes is costly. We need to find a way to utilize the
special properties of the feasible regions being compared.

The first issue can be addressed by “fixing” one of the n timers of events e1, . . . , en.
As the selection of the “fixed” one does not change the ratio of the intersection
in any of the feasible regions, without loss of generality, we choose to fix t(en) at
d = maxi=1,...,n−1 d∗

n,i(in fact, as can be seen from (2), d could be any value larger than
maxi=1,...,n−1 d∗

n,i). The geometric interpretation for this is that the hyperplane t(en) = d
is used to “cut” the feasible region so that the resulting region is bounded in �n−1.

Example 5. For example, in (14), if we let t(e3) = 5, the constraint set becomes{
t(e1) − t(e2) ≤ 5, t(e2) − t(e1) ≤ 7,

t(e1) ≤ 10, t(e1) ≥ 3, t(e2) ≤ 15

}
(19)

which is illustrated as dash line segments in Figure 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 34, Publication date: June 2011.



34:14 Y. Yu et al.

Since the volume computation algorithm requires that the origin in �n is a vertex of
the polytope4, we shift the feasible region to the origin (illustrated as the gray region
in Figure 5), the constraint set will become{

t(e1) − t(e2) ≤ 2, t(e2) − t(e1) ≤ 10,

t(e1) ≤ 7, t(e2) ≤ 15

}
. (20)

As can be easily seen from the figure, the area of the feasible region is 80. To
gain some insights into the volume computation algorithm which will facilitate our
proof of Theorem 4.2, we illustrate the derivation of the area using the algorithm as
follows.

Adopting the volume computation algorithm on the bounded feasible region, we
choose the objective function f ((t(e1), t(e2))T) = t(e1) + t(e2) and have the initial
tableau ⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0 0 0 2 = d′∗
3,1 + d′∗

1,2 − d′∗
3,2

−1 1 0 1 0 0 10 = d′∗
3,2 + d′∗

2,1 − d′∗
3,1

1 0 0 0 1 0 7 = d′∗
3,1 + d′∗

1,3

0 1 0 0 0 1 15 = d′∗
3,2 + d′∗

2,3

−1 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

where we have n = 3 − 1 = 2, δv = 1 (the initial pivot element enclosed in a box in (21)),
the nonbasic feasible solutions are the two nonnegative numbers (−1,−1) in the lower
left partition of the tableau, and d̃ = 0 (the lower right partition of the tableau, that is,
the value of the objective function at the current vertex (0,0)). Then the first element
of the summation in (18) is 1

2!
1
1

02

(−1)(−1) = 0. Continuing pivoting at (t(e1), t(e2)) = (2, 0)
using the 1st row, we have⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0 0 0 2 = d′∗
3,1 + d′∗

1,2 − d′∗
3,2

0 0 1 1 0 0 12 = d′∗
1,2 + d′∗

2,1

0 1 −1 0 1 0 5 = d′∗
1,3 + d′∗

3,2 − d′∗
1,2

0 1 0 0 0 1 15 = d′∗
3,2 + d′∗

2,3

0 −2 1 0 0 0 2 = d′∗
3,1 + d′∗

1,2 − d′∗
3,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(22)

and 1
2!

1
1

22

(−2)(1) = −1. Pivoting at (t(e1), t(e2)) = (7, 5) using the 3rd row, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 7 = d′∗
1,3 + d′∗

3,1

0 0 1 1 0 0 12 = d′∗
1,2 + d′∗

2,1

0 1 −1 0 1 0 5 = d′∗
1,3 + d′∗

3,2 − d′∗
1,2

0 0 1 0 −1 1 10 = d′∗
1,2 + d′∗

2,3 − d′∗
1,3

0 0 −1 0 2 0 12 = 2d′∗
1,3 + d′∗

3,1 + d′∗
3,2 − d′∗

1,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(23)

4This requirement can be discarded by lexicographic techniques for handling primal degeneracy in linear
programming.
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and 1
2!

1
1

122

(−1)(2) = −36. Pivoting at (t(e1), t(e2)) = (7, 15) using the 4th row, we have⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 7 = d′∗
1,3 + d′∗

3,1

0 0 0 1 1 −1 2 = d′∗
2,1 + d′∗

1,3 − d′∗
2,3

0 1 0 0 0 1 15 = d′∗
2,3 + d′∗

3,2

0 0 1 0 −1 1 10 = d′∗
1,2 + d′∗

2,3 − d′∗
1,3

0 0 0 0 1 1 22 = d′∗
1,3 + d′∗

3,1 + d′∗
2,3 + d′∗

3,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(24)

and 1
2!

1
1

222

(1)(1) = 242. Pivoting at (t(e1), t(e2)) = (5, 15) using the 2nd row, we have⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1 5 = d′∗
2,3 + d′∗

3,1 − d′∗
2,1

0 0 0 1 1 −1 2 = d′∗
2,1 + d′∗

1,3 − d′∗
2,3

0 1 0 0 0 1 15 = d′∗
2,3 + d′∗

3,2

0 0 1 1 0 0 12 = d′∗
2,1d′∗

1,2

0 0 0 −1 0 2 20 = 2d′∗
2,3 + d′∗

3,2 + d′∗
3,1 − d′∗

2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(25)

and 1
2!

1
1

202

(−1)(2) = −100. Pivoting at (t(e1), t(e2)) = (0, 10) using the 1st row, we have⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1 5 = d′∗
2,3 + d′∗

3,1 − d′∗
2,1

1 0 0 0 1 0 7 = d′∗
3,1 + d′∗

1,3

−1 1 0 1 0 0 10 = d′∗
3,2 + d′∗

2,1 − d′∗
3,1

0 0 1 1 0 0 12 = d′∗
2,1 + d′∗

1,2

−2 0 0 1 0 0 10 = d′∗
3,2 + d′∗

2,1 − d′∗
3,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(26)

and 1
2!

1
1

102

(−2)(1) = −25. Pivoting at (t(e1), t(e2)) = (0, 0) using the 3rd row, we have⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 15 = d′∗
3,2 + d′∗

2,3

1 0 0 0 1 0 7 = d′∗
3,1 + d′∗

1,3

−1 1 0 1 0 0 10 = d′∗
3,2 + d′∗

2,1 − d′∗
3,1

1 −1 1 0 0 0 2 = d′∗
3,1 + d′∗

1,2 − d′∗
3,2

−1 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(27)

and 1
2!

1
1

02

(−1)(−1) = 0. Therefore, from (18), the area of the slice is 0 − 1 − 36 + 242 − 100 −
25 + 0 = 80, which conforms to our early observation. Similarly, the corresponding
areas of the feasible region of (1) and its intersection with that of (14) are 112 and 73,
respectively5.

5As can be seen from (21) to (27), the linear combinations of d∗
i, j’s on the right side of each tableau correspond

to cycles in the constraint graph of the timing constraint set. In fact, as shown in Provan’s algorithm [Provan
1994] for enumerating vertices of a polytope related to a network linear program, the hyperplanes of the
polytope P adjacent to a vertex v is in one-to-one correspondence with simple cycles of a directed graph
modified (with respect to v) from the directed graph defined by the network linear program. Therefore,
although a network linear program is significantly simpler than the general linear program as in (17), the
number of terms in the summation (18) is still generally exponential. Therefore, deriving exact similarity
ratio is of exponential cost.
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From Example 5, we have the following observations that are crucial in our proof of
Theorem 4.2.

Observation 1. Pivoting is essentially a Gaussian elimination, thus the value of the
objective function at any pivoting step must be a linear combination of d∗

i, j’s.

Observation 2. As the corresponding hyperplanes of different timing constraint sets
are parallel, the pivoting sequences for enumeration vertices of the two feasible regions
are the same regardless of the value of d∗

i, j’s. This property overcomes the second issues
identified earlier.

We now prove Theorem 4.2 based on these observations.

PROOF. Given constraint sets C and C′ whose normal forms are D∗ and D′∗, respec-
tively. Let C∩ denote the intersection of C and C′ and D∩∗ denote its normal form. We
define a new constraint set C′′ whose normal form D′′∗ is

D′′∗ = sup
i, j=1,...,n,

i�= j, d∗
i, j≤d′∗

i, j

{
d′∗

i, j

d∗
i, j

}
· D∩∗. (28)

Since the constraint graph of C∩ comprises of edges from either C or C′, for any entry
d∩∗

i, j of D∩∗, we have

d∩∗
i, j = d(′)∗

i,k1
+ d(′)∗

k1,k2
+ · · · + d(′)∗

kt−1,kt
+ d(′)∗

kt, j, (29)

where d(′)∗
ks,ks+1

denotes either d∗
ks,ks+1

or d′∗
ks,ks+1

. Therefore, from (28), when

sup i, j=1,...,n,
i�= j, d∗

i, j≤d′∗
i, j

{
d′∗

i, j

d∗
i, j

}
≥ 1, we have

d′′∗
i, j =

(
d(′)∗

i,k1
+ · · · + d(′)∗

kt, j

)
· sup

i, j=1,...,n,
i�= j, d∗

i, j≤d′∗
i, j

{
d′∗

i, j

d∗
i, j

}
. (30)

If d(′)∗
ks,ks+1

is d∗
ks,ks+1

, since sup i, j=1,...,n,
i�= j, d∗

i, j≤d′∗
i, j

{
d′∗

i, j

d∗
i, j

}
≥ d′∗

ks,ks+1
d∗

ks,ks+1
we have

d(′)∗
ks,ks+1

· sup
i, j=1,...,n,

i�= j, d∗
i, j≤d′∗

i, j

{
d′∗

i, j

d∗
i, j

}
≥ d′∗

ks,ks+1
(31)

and if d(′)∗
ks,ks+1

is d′∗
ks,ks+1

, as sup i, j=1,...,n,
i�= j, d∗

i, j≤d′∗
i, j

{
d′∗

i, j

d∗
i, j

}
≥ 1, (31) also holds. Thus, from (30) and

(31), we have

d′′∗
i, j ≥ d′∗

i,k1
+ d′∗

k1,k2
+ · · · + d′∗

kt−1,kt
+ d′∗

kt, j ≥ d′∗
i, j, (32)

that is, D′′∗ ≥ D′∗. Therefore, from Theorem 3.4, the feasible region of C′ is included
within that of C′′ and thus

vol(C′′)/vol(C′) ≥ 1. (33)

We now use the volume computation algorithm to calculate the ratio between
vol(C∩) and vol(C′′). From Observation 1, at each pivoting step, the value of the
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objective function is a linear combination of d∗
i, j’s, that is, at the k’th pivoting step, the

values of the objective functions for vol(C∩) and vol(C′′) are∑
i, j=1,...,n,

i�= j

a∩(k)
i, j · d∩∗

i, j and
∑

i, j=1,...,n,
i�= j

a′′(k)
i, j · d′′∗

i, j (34)

respectively. From Observation 2, since the pivoting sequence for deriving vol(C∩) and
vol(C′′) are the same, we have

∀i, j, k : a∩(k)
i, j = a′′(k)

i, j . (35)

Moreover, from (28), we have

∀i, j = 1, . . . , n, i �= j :
d∩∗

i, j

d′′∗
i, j

= inf
i, j=1,...,n,

i�= j, d∗
i, j≤d′∗

i, j

{
d∗

i, j

d′∗
i, j

}
. (36)

Therefore, from (35) and (36), we have∑
i, j=1,...,n,

i�= j
a∩(k)

i, j · d∩∗
i, j∑

i, j=1,...,n,
i�= j

a′′(k)
i, j · d′′∗

i, j

=
d∩∗

1,2

d′′∗
1,2

= · · · =
d∩∗

n,n−1

d′′∗
n,n−1

= inf
i, j=1,...,n,

i�= j, d∗
i, j≤d′∗

i, j

{
d∗

i, j

d′∗
i, j

}
. (37)

From Observation 2, we also know that at each pivoting step, the cumulative
products of pivoting elements and the nonbasic feasible solutions for deriving vol(C∩)
and vol(C′′) are the same. Therefore, from (18) and (37), we have

vol(C∩)
vol(C′′)

=

∑
∀v∈C∩

1
n!

1
δv

(∑
a∩(k)

i, j ·d∩∗
i, j

)|E|−1

γi1 ···γin∑
∀v∈C′′

1
n!

1
δv

(∑
a

′′ (k)
i, j ·d′′∗

i, j

)|E|−1

γi1 ···γin

=

⎛⎜⎝ inf
i, j=1,...,n,

i�= j, d∗
i, j≤d′∗

i, j

{
d∗

i, j

d′∗
i, j

}⎞⎟⎠
|E|−1

. (38)

Finally, from (33) and (38), we have

vol(C∩)
vol(C′)

=
vol(C∩)
vol(C′′)

· vol(C′′)
vol(C′)

≥
⎛⎜⎝ inf

i, j=1,...,n,
i�= j, d∗

i, j≤d′∗
i, j

{
d∗

i, j

d′∗
i, j

}⎞⎟⎠
|E|−1

. (39)

From Theorem 4.2, one can see that the similarity lower bound can be calculated
easily once the normal forms of the constraint sets are available. Comparing sim-
ilarities of different constraint set pairs then can be indirectly achieved through
evaluating their similarity bounds. Before discussing various implications of using
the similarity bound in Section 4.2, we demonstrate the use of Theorem 4.2 on the
constraint sets given in Example 4. From Theorem 4.2, the ratio of the common
region between (1) and (14) to the feasible region of (14) is bounded by

[ 36
49 , 1

)
where

36
49 =

(
inf

{ 6
7 , 9

10

})3−1
. Therefore, we assume a uniform distribution of the event timing
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Fig. 6. Feasible region similarities of nonuniformly distributed timed data streams.

behavior in the feasible regions, Theorem 4.2 guarantees that at least 36
49 = 73% timed

data streams that satisfy (14) also satisfy (1). This gives us a quantitative measure of
the resemblance between systems constrained by (1) and (14), respectively. Actually,
as shown in Example 5, the exact ratio of the common region between (1) and (14) to
the feasible region of (14) is 73

80 = 91.25%.

4.2 Discussions

4.2.1 Timed Data Stream Distribution in the Feasible Region. In the preceding discussions,
we assume that timed data streams are uniformly distributed in the feasible region of
the constraint set. The bound given in Theorem 4.2 is based on such an assumption.
However, the definition of constraint feasible region similarities can be extended
to nonuniform cases. For example, consider two 2-dimensional feasible regions of
constraint sets C = {t(e1) − t(e2) ≤ 5, t(e2) − t(e1) ≤ 15} and C′ = {t(e1) − t(e2) ≤
15, t(e2)− t(e1) ≤ 9}. Assuming timed data streams are not uniformly distributed in the
regions, but are as shown in Figure 6(a) and 6(b), respectively. Obviously, in order to
compare their similarities, not only their areas but also the densities within the areas
must be considered. For instance, the intersection of the feasible regions of C and C′ is
denser than the complements of the regions as depicted in Figure 6(c). Therefore, when
calculating the similarity of S(C) based on Definition 4.1, we must take into account
distribution density of timed data stream within its feasible regions formed by a given
constraint set.

In a soft real-time system, the distribution of timing values (such as the completion
time of a task) can be evaluated by methods presented in existing work, for example,
Tia et al. [1995], Kalavade and Moghé [1998], yi Huang and Liu [1995], and Li [1996].
The distribution can then be used in combination with our proposed similarity bound
concept to compare timing behaviors of different designs. The detail of this is beyond
the scope of this article.
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Fig. 7. Similarity relation is not transitive.

4.2.2 Symmetry and Transitivity of Constraint Set Similarity. It is worth pointing out that
the constraint set similarity relation is neither symmetric nor transitive. From Def-
inition 4.1, it is not hard to see that in general C ∼ C′ �= C′ ∼ C. For instance, for
constraint sets C = {0 < t( f j) − t(sj) ≤ 22} and C′ = {0 < t( f j) − t(sj) ≤ 25} as given in
Example 4, C ∼ C′ = 88%, while C′ ∼ C = 1.

Similarly, neither can we infer C ∼ C′′ from C ∼ C′ and C′ ∼ C′′. Figure 7
shows an example. In the figure, the feasible regions of three constraint sets C, C′,
and C′′ are represented as a tetragon, a pentagon, and a hexagon, respectively. The
similarity between C and C′ (C ∼ C′) is the same for both figure Figure 7(a) and
Figure 7(b). However, depending on the positions from which C′′ similar to C′, C and
C′′ can be either very similar (as shown in Figure 7(b)) or very dissimilar (as shown in
Figure 7(a)).

4.2.3 The Tightness of the Similarity Bound. From Theorem 4.2, it is easy to see that
as the dimension of feasible regions gets higher, the similarities between their corre-
sponding constraint sets decrease significantly due to the exponent |E| − 1. This is
quite intuitive since, on one hand, as more events and constraints get involved, the
chance of timed data streams satisfying one constraint set but violating the other gets
bigger; on the other hand, from a geometric point of view, the volume of a polytope is
exponential to its dimension, and so does the similarity between two polytopes.

4.2.4 Dealing with Unconstrained Event Pairs in a Constraint Set. In Example 4, we illus-
trate the similarities between timing constraint sets where there is a constraint, ei-
ther explicit or implicit, for every pair of events. However, there are cases where
there are event pairs which are not constrained. For example, for constraint sets
C1 = {−5 ≤ t(e2) − t(e1) ≤ 22} and C2 = {t(e2) − t(e1) ≤ 25}, the similarity C1 ∼ C2
is close to 0 since in C2 we implicitly have t(e1) − t(e2) ≤ +∞ and the feasible region is
not bounded on the corresponding direction. In this case, the similarity relation stated
in Theorem 4.2 still applies, but as it approaches to 0 (C1 ∼ C2 = inf

{ 22
25 , 5

+∞
}

= 0),
such 0 similarities render the metric too coarse. Hence, a refinement that considers
unconstrained events is needed.

For most real-time applications, we observe that events often form groups such that
those within the same group are pairwisely constrained either explicitly or implicitly
as shown in Section 4.1, and the timing relations between groups are either nonex-
istent or constrained by unidirectional constraints such as precedence constraints or
delays. Therefore, given two timing constraint sets C and C′ on the same set of events
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Fig. 8. Similarity between general timing constraint sets.

E, in order to take the unconstrained event pairs into consideration, we take the fol-
lowing steps

(I) Partition E by strongly connected components of constraint graphs of C and C′.
We only consider the case where both partitions are the same. It is not hard to see
that each pair of events in a partition is explicitly or implicitly constrained.

(II) Let E1, . . . , EK denote the K partitions and C1, . . . , CK and C′
1, . . . , C′

K denote
the constraints of C and C′ within the partitions, respectively. Then C ∼ C′ is
bounded by

C ∼ C′ ≥ inf
k=1,...K

{
Ck ∼ C′

k

}
(40)

≥ inf
k=1,...K

⎧⎪⎨⎪⎩ inf
i, j=1,...,n,

i�= j, d∗
ki, j

≤d′∗
ki, j

{
d∗

ki, j

d′∗
ki, j

}|Ek|−1
⎫⎪⎬⎪⎭ . (41)

By partitioning events as well as the constraints among them, we reduce the dimen-
sions of feasible regions of constraint sets, filter out constraints that are irrelevant to
the measurement of similarities, and thus get a more fine-grained view of similarities
between the constraint sets.

We demonstrate the approach through a simple example. Consider vote-and-decide
applications where several groups of voters vote within groups and a decision unit col-
lects decisions from all groups. A typical constraint set constrains events within each
voting group by relative deadlines to guarantee voting consistency and defines cer-
tain delays for the decision unit to make decision after all votes are collected. Figure 8
shows the timing constraint graphs of two timing constraint sets. According to strongly
connected components, we partition the events into E1 = {e1, e2, e3}, E2 = {e4, e5}, and
E3 = {e6}, where partitions E1 and E2 are events from the corresponding voting groups,
and partition E3 is the deciding event. The similarity between the two sets of con-
straints, C ∼ C′, is then lower bounded by inf{36

49 , 9
13 , 1} ≈ 69%.

5. APPLICATION 1: IMPROVING SYSTEMS’ QOS PROPERTIES WITH CONSTRAINT
SIMILARITY GUARANTEES

The constraint similarity study is important as it has broad applications in ar-
eas where other types of QoS requirements, such as total energy consumption, are
directly affected by a system’s timing behaviors. As an example, we consider the
energy-aware task assignment for soft real-time applications on a multiprocessor
system-on-chip (MPSoC) which is similar to the one discussed in Chantem et al. [2008].
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In particular, in this section, we will demonstrate: (a) given the similarity metric and
its bound (Section 4), calculate the probability guarantee that the original timing con-
straints are still satisfied by a modified constraint set for the purpose of reducing total
energy consumption; and (b) given a maximum allowed constraint comprise, determine
the constraint relaxations that best reduce energy consumption.

It is worth pointing out that the example of reducing energy consumption is used
only to illustrate our approach. The similarity metric and the methodologies of using
the metric to guide the trade-offs between timing and other QoS properties can be
applied in a broad spectrum of soft real-time applications where both timing and other
resources are under constraints.

5.1 System and Task Model

The MPSoC under consideration consists of a set of heterogeneous cores M. Let J be
the set of tasks to be executed on M. For each task j ∈ J, the following parameters are
used in our discussions:

— EX ( j, m): j’s worst-case execution time on core m,
— ex( j, m): j’s actual execution time on core m, ex( j, m) ∈ (0, EX ( j, m)],
— dj: the relative deadline of j,
— sj: the start event of task j,
— f j: the finish event of task j, t( f j) = t(sj) + ex( j, m),
— P( j, m): the power consumption of core m ∈ M when task j executes on m.

The goal is to determine a static assignment of tasks to cores to further reduce the en-
ergy consumption while ensuring the required probability of constraint satisfactions
guarantees. The hard real-time version of the problem, where a 100% deadline satis-
faction must be ensured, is discussed in Chantem et al. [2008]. From the constraint
satisfaction perspective, a deadline miss indicates that an execution trace falls outside
of the feasible region defined by the given timing constraint set. When we allow a
certain percentage of deadline misses, we actually include some execution traces out-
side the original feasible region, or in other words, the feasible region is expanded.
The expanded feasible region can be considered as a relaxed constraint set. The con-
straint similarity study discussed in Section 4 allows us to quantitatively compare the
deviations of the changed constraint from its original set, and hence to select which
constraint(s) to relax based on a quantitative measure.

5.2 Reducing Total Energy Consumption

As shown in Chantem et al. [2008], the problem of minimizing total energy consump-
tion for the MPSoC is to minimize

∑
j∈J

∑
m∈M P( j, m) · EX ( j, m) · δ( j, m) where

δ( j, m) =
{

1 if j is assigned to m
0 otherwise.

(42)

However, in our case, the actual execution time ex( j, m) is not a constant value, and
we assume it follows a certain probability distribution over the interval (0, EX ( j, m)].
Therefore, the goal is to minimize the expectation of the total energy consumption and
the objective function thus becomes

minimize
∑
j∈J

∑
m∈M

P( j, m) · E
[
ex( j, m)

] · δ( j, m).

Next, we demonstrate through an example how to use the similar bound to reduce
total energy consumption by relaxing timing constraints.
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Example 6. Consider two tasks j1 and j2 with relative deadline constraints dj1 =
dj2 = 20ms and synchronization constraints |t(sj1 ) − t(sj2 )| ≤ 5ms. We thus have the
following set of constraints:⎧⎪⎨⎪⎩

t( f j1 ) − t(sj1 ) ≤ 20, t(sj1 ) − t(sj2 ) ≤ 5,

t( f j2 ) − t(sj2 ) ≤ 20, t(sj2 ) − t(sj1 ) ≤ 5,

t(sj1 ) − t( f j1 ) ≤ ε, t(sj2 ) − t( f j2 ) ≤ ε

⎫⎪⎬⎪⎭ (43)

Here t(sj1 ) − t( f j1 ) ≤ ε(ε → 0−) guarantees causality. The normal form of the constraint
set (indexed by t(sj1 ), t( f j1 ), t(sj2 ), t( f j2 )) is given by (44).

⎡⎢⎢⎢⎣
0 ε 5 5 + ε

20 0 25 25 + ε

5 5 + ε 0 ε

25 25 + ε 20 0

⎤⎥⎥⎥⎦ (44)

Now, consider the scheduling problem of task j1 and j2 on the following MPSoC with 4
cores. We have

10W 10W
20ms m1 m2 20ms
22ms m3 m4 25ms

7W 5W

where P( j1, m1) = P( j2, m1) = 10W, EX ( j1, m1) = EX ( j2, m1) = 20ms, etc.
To satisfy the constraint set (43), j1 and j2 can only be assigned to m1 and m2, re-

spectively. Assuming the actual execution time is uniformly distributed in the interval
(0, Ex( j1, m1)], the expected total energy consumption is 10W × 10ms + 10W × 10ms =
200W · ms.

If we are willing to compromise the timing constraints, the deadline constraint of j1
can be relaxed to dj1 = 22ms from 20ms, the new constraint set becomes

⎧⎪⎨⎪⎩
t( f j1 ) − t(sj1 ) ≤ 22, t(sj1 ) − t(sj2 ) ≤ 5,

t( f j2 ) − t(sj2 ) ≤ 20, t(sj2 ) − t(sj1 ) ≤ 5,

t(sj1 ) − t( f j1 ) ≤ ε, t(sj2 ) − t( f j2 ) ≤ ε

⎫⎪⎬⎪⎭ (45)

with normal form ⎡⎢⎢⎢⎣
0 ε 5 5 + ε

22 0 27 27 + ε

5 5 + ε 0 ε

25 25 + ε 20 0

⎤⎥⎥⎥⎦ . (46)

Based on Theorem 4.2, the similarity between these two constraint sets is lower-
bounded by

( 20
22

)4−1 ≈ 75%. In other words, a system that satisfies the new con-
straints (45) has at least 75% guarantee of satisfying the initial system constraints
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(43). The benefit of relaxing the constraint is that we can now use m3 to shedule j1 or
j2 and the expected total energy consumption is thus reduced to 177W· ms, a 11.5%
reduction.

Similarly, if we further relax the deadline constraint of j2 to dj2 =25ms, one can
easily verify that the similarity between the original and the modified constraint sets
is bounded by [51.2%, 1]

(( 20
25

)4−1
= 51.2%

)
. In other words, systems that satisfy the

modified constraints still have at least 50% chance to satisfy the original one. How-
ever, with such deadline relaxation, we can now schedule tasks j1 and j2 on m3 and
m4, respectively, with the corresponding expected total energy consumption reduced to
139.5W· ms, a 30.25% reduction.

Suppose we now have another job j3 with a relative deadline of 22ms. New con-
straints t( f j3 ) − t(sj3 ) ≤ 22ms and t(sj3 ) − t( f j3 ) ≤ ε need to be inserted into (43). Since j3
has no timing relations with j1 and j2, based on Section 4.2, we partition the constraint
set into twosmaller normal forms.⎡⎢⎢⎢⎣

0 ε 5 5 + ε

20 0 25 25 + ε

5 5 + ε 0 ε

25 25 + ε 20 0

⎤⎥⎥⎥⎦ and

[
0 ε

22 0

]
(47)

For (47), the most energy-efficient assignment is to assign j1, j2, and j3 to m1, m2,
and m3, respectively, with a total expected energy consumption of 277W· ms. If the
deadlines for j1 and j3 are reduced to 22ms and 25ms, respectively, the corresponding
normal forms are changed from (47) to (48).⎡⎢⎢⎢⎣

0 ε 5 5 + ε

22 0 27 27 + ε

5 5 + ε 0 ε

25 25 + ε 20 0

⎤⎥⎥⎥⎦ and

[
0 ε

25 0

]
(48)

We can then assign j1, j2, and j3 to m3, m2, and m4, respectively, reducing the total
expected energy consumption to 239.5W· ms, a 14% reduction. The similarity between
(47) and (48) is bounded by inf

{( 20
22

)4−1
,
( 22

25

)2−1
}

≈ 75%. In other words, we have at
least 75% guarantee to satisfy the initial constraints with the relaxed constraint set.

The previous examples show that understanding the implication of constraint
changes both from the system timing property and nontiming properties points of
view plays a key role in conducting design trade-offs. The similarity metric provides a
quantitative measure about this implication in terms of timing constraint satisfaction.
Specifically, the similarity bound between the orignal constraint set and that the mod-
ified one quantifies the maximal timing constraint satisfaction compromise in order
to achieve certain desired QoS improvements. It thus allows us to make well-found
decisions.

For the preceding examples, we manually picked some timing constraints to relax
and calculated the similarity between the resultant constraint set and the original one.
Under the same setting given in Example 6, a more interesting problem is: suppose we
are allowed to relax the predefined constraints by certain amounts, can we determine
which constraints to relax and how to relax them in order to find an assignment that
further reduces expected total energy consumption?
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5.3 Determining Constraint Relaxations

As we have seen from Section 5.2, relaxing timing constraints can further reduce to-
tal energy consumption, and Theorem 4.2 gives the bound of similarity between the
modified constraint set and the original one. However, for real systems with a large
number of events and constraints, there are possibly infinite ways even to relax a sin-
gle timing constraint, not to mention there are combinatorial choices of constraints to
relax. Therefore, relaxing constraints through exhaustive search is not realistic. Next
we consider one type of design problems and provide a systematic approach.

Given an application with both timing requirements and a desired QoS property,
suppose that the design problem is formulated as an optimization of some QoS prop-
erty under multiple types of constraints (including timing constraints). The goal is to
find appropriate timing constraints and relax them to appropriate degrees so that the
desired QoS property can be further improved while the initial timing constraints are
still at least P% satisfied. We introduce the following steps for solving the problem.
Step 1: Based on given timing constraints, construct the corresponding timing con-
straint graph G. Partition G by strongly connected components. And for each strongly
connected component, compute its normal form.
Step 2: Modify the original timing constraints such that each event pair of a constraint
within a partition is constrained by a variable deadline (instead of the original dead-
line). Add new constraints to constrain the newly introduced deadline variables based
on the specified similarity bound P%.
Step 3: Solve the modified optimization problem using standard algorithms. The op-
timization solution contains the optimized value of the objective function which is the
improved QoS property value, and the variable assignments which define the neces-
sary timing constraint relaxations.

In the following, we illustrate the use of the preceding general steps through the ex-
ample given in Section 5.2. More specifically, consider the specific example of assign-
ing a set of five tasks j1, . . . , j5 to the MPSoC illustrated under the following timing
constraints.

(1) The relative deadlines of all tasks are 20ms, that is, dj1 = dj2 = dj3 = dj4 = dj5 =
20ms;

(2) There are synchronization constraints between j1 and j2, and between j3 and j4,
that is, |t(sj1 ) − t(sj2 )| ≤ 5ms and |t(sj3 ) − t(sj4 )| ≤ 5ms;

(3) Task j3 and j4 should start no later than 10ms after t5 finishes, that is, we have
constraints t(sj3 ) − t( f j5 ) ≤ 10 and t(sj4 ) − t( f j5 ) ≤ 10.

Chantem et al. [2008] formulate the problem as an MILP to optimize expected total
energy consumption as the following.

minimize ∑
j∈J

∑
m∈M

P( j, m) · E
[
ex( j, m)

] · δ( j, m) (49)

subject to

∀ j ∈ J : t( f j) = t(sj) +
∑
m∈M

δ( j, m) · EX ( j, m) (50)

∀ j ∈ J :
∑
m∈M

δ( j, m) = 1 (51)

∀ei, e j ∈ E : t(ei) − t(e j) ≤ dki, j (52)
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Here E =
{
sj, f j| j ∈ J

}
, and (52) generalizes timing constraints to a pairwise form

(dki, j are constants obtained from the original constraints, for events that are not con-
strained, dki, j = +∞).6

Solving the MILP gives the nonpreemptive schedule of tasks on the cores such that
all timing constraints are met and the total energy consumption is minimized. Now,
if we allow timing constraint relaxations but require a 75% constraint satisfaction
guarantee, the original MILP needs to be modified based on the steps given earlier. In
particular, we have what follows.
Step 1: For the constraint set given in (52), construct its corresponding constraint
graph and partition the event set E into E1, . . . , EK based on the graph’s strongly con-
nected components. Only timing constraints within partitions are possible candidates
for relaxations. Note that for any j ∈ J, sj and f j must be in the same partition since
they are strongly connected by the relative deadline of j, that is, t( f j) − t(sj) ≤ dj and
t(sj) − t( f j) ≤ ε. Therefore, all relative deadlines are possible to be relaxed.

For ∀k = 1, . . . , K, derive the constraint normal form D∗
k for constraints among Ek,

that is, for ∀ei, e j ∈ Ek, t(ei) − t(e j) ≤ d∗
ki, j

. For this example, we have partitions E1 =
{sj1, f j1 , sj2 , f j2}, E2 = {sj3, f j3 , sj4 , f j4}, and E3 = {sj5, f j5}. The constraint normal forms
D∗

1, D∗
2, and D∗

3 on these partitions are

D∗
1 = D∗

2 =

⎡⎢⎢⎢⎣
0 ε 5 5 + ε

20 0 25 25 + ε

5 5 + ε 0 ε

25 25 + ε 20 0

⎤⎥⎥⎥⎦ , D∗
3 =

[
0 ε

20 0

]
, (53)

respectively.
Step 2: For constraints within partitions, modify (52) in the MILP formulation to

∀ei, e j ∈ Ek, k = 1, . . . , K : t(ei) − t(e j) ≤ d′
ki, j

, (54)

∀ei, e j ∈ Ek, k = 1, . . . , K : d′
ki, j

≤
⌊

d∗
ki, j

|Ek |−1
√

P%

⌋
, (55)

where d′
ki, j

is the newly introduced variable for constraint relaxations. In the modified
MILP, (54) and (55) are responsible for the selection and relaxation of constraints.
From (55), we have (

d∗
ki, j

d′∗
ki, j

)|Ek|−1

≥
(

d∗
ki, j

d′
ki, j

)|Ek|−1

≥ P%, (56)

where d′∗
ki, j

is the corresponding entry in the normal form of the relaxed constraints
and thus d′∗

ki, j
≤ d′

ki, j
. According to Theorem 4.2 and Section 4.2, the probability that the

6Note that the constraints to guarantee that all tasks execute for their durations without overlap [Chantem
et al. 2008] are omitted from the formulation for clarity of presentation.
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system satisfying the relaxed constraint set also satisfies the original constraint set is
no less than P%.

For example, for constraint t(sj1 ) − t(sj3 ) ≤ 5, we derive two constraints, that is,

t(sj1 ) − t(sj3 ) ≤ d′
sj1 sj3

and d′
sj1 sj3

≤
⌊

5/
3
√

0.75
⌋

; for constraint t(sj3 ) − t( f j5 ) ≤ 10, since
sj3 and sj5 belong to different partitions, the constraint is still in the modified MILP
but cannot be relaxed. Specifically, (52) in the MILP is replaced by the following
constraints.

t(sj1 ) − t( f j1 ) ≤ d′
sj1 f j1

, d′
sj1 f j1

≤
⌊
ε/

3
√

0.75
⌋

t(sj1 ) − t(sj3 ) ≤ d′
sj1 sj3

, d′
sj1 sj3

≤
⌊

5/
3
√

0.75
⌋

· · · · · ·
t( f j5 ) − t(sj5 ) ≤ d′

f j5 sj5
, d′

f j5 sj5
≤

⌊
20/

1
√

0.75
⌋

t(sj3 ) − t( f j5 ) ≤ 10 , t(sj4 ) − t( f j5 ) ≤ 10

Step 3: Solve the modified MILP using an MILP solver (such as ILOG CPLEX R©). The
solution contains the minimum expected total energy consumption and the assigned
value of d′

ki, j
which are the new constraint values in the correspondingly relaxed

constraints. In this example, solving the modified instance of the MILP formulation,
we have an optimal solution of 416.5W· ms, with δ(1, 1) = 1, δ(2, 3) = 1, δ(3, 2) = 1,
δ(4, 3) = 1, and δ(5, 4) = 1. The corresponding schedule is to run j1, j2, and j5 on core
m1, m3, and m4 from time 0, respectively, with their new relative deadlines being
20ms, 22ms, and 26ms, respectively. Since j2 and j4 are both assigned to core m3, to
void overlap, from time 22ms, j3 and j4 are scheduled to run on m2 and m3, with their
new relative deadlines being 20ms and 22ms, respectively. The total execution time
in this case is 44ms with all constrains satisfied. However, with the original MILP, we
can only schedule all five tasks on m1 and m2, with a minimum total execution time
of 60ms and expected energy consumption of 500W· ms. Therefore, by compromising
no more than 25% of satisfaction guarantees of the original constraints, we gain a re-
duction of expected energy consumption and total execution time by 16.7% and 26.7%,
respectively.

5.4 Discussions

Through the previous example of reducing total energy consumption with constraint
similarity guarantees, we have demonstrated that when we do not require 100% tim-
ing constraint satisfaction guarantees, which is often the case for soft real-time appli-
cations, the flexibility allowed can be used to improve system’s other QoS properties.
The similarity metric gives a quantitative design guidance of how much timing con-
straint satisfaction is to be compromised in order to bring the QoS gain. We have
further illustrated the detailed steps in obtaining better system QoS properties while
still maintaining the required level of system’s timing behavior resemblance.

6. APPLICATION 2: PREDICTING TRACKING ERROR RATE BASED ON
CONSTRAINT SIMILARITY

As mentioned in Section 1, real-world performances of real-time systems may devi-
ate from their designs due to unpredictable factors such as the environment that they
are deployed in. In this section, we use a simplified real-time target tracking system
to illustrate how a timing constraint set in a real-world setting may differ from the
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Fig. 9. Four sensors tracking a moving target.

one under ideal assumptions. We further illustrate that despite partially known and
changing environments, the constraint similarity study given in Section 4 can be uti-
lized to quantitatively infer the tracking error rate and thus improve the predictability
of the system in real-world environments.

6.1 System Model

We consider a target tracking system presented in EnviroTrack [Abdelzaher et al.
2004]. To simplify our discussion, we assume a rectangular grid of sensors that
periodically report to a control center their distances to a moving target. Each sensor
si has a uniformly distributed bounded unknown delay, denoted by ti ∈ [0, d], from
sensing the data to reporting the data. A target that moves in the area is detected
by the sensors and the final coordinates of the target are decided by the control
center aggregating the sensed data from them. The system’s QoS is measured by the
tracking error rate which is the ratio of inaccurately reported data due to inconsistent
data from sensors to the total number of data reported. The tracking error rate is
determined by the sensor data freshness and sensor data consistency.

In order to have fresh data, it is desirable for the control center to have short de-
cision times. In addition, the sensor data aggregated at the control center should
belong to the same sampling period to minimize data inconsistency among different
sensors. More specifically, let t(ei(k)) denote the time that sensor si reports to the con-
trol center of its distance to the target in the k’th detecting period, under the ideal as-
sumption that a sensor locates the target at the beginning of the k’th detecting period.
We have

t(ei(k)) = kT + ti, (57)

where T is the detecting period for all sensors. Hence, for data consistency, we require
|t(ei(k)) − t(e j(k))| = |ti − tj| ≤ d, where ti, tj ∈ [0, d].

To simplify our discussion, we restrict our attention to an r × r (r = 1m) square field
with four ultrasonic sensors (whose detecting signal speed is V = 340m/sec) located on
the corners of the field. The detecting radius of each sensor is assumed to be large
enough to cover the entire field.

From time 0 and for every T = 0.2sec, all sensors try to measure their distances
to a moving target, and after their distinct bounded unknown delays ti ∈ [0, d]
(d = 0.025sec), the sensors report the distances to a control center which decides the
coordinates of the target by aggregating the distance values from the four sensors.
Under the ideal assumption that a sensor measures the distance at the beginning
of the k’th detecting period, the time that the new distance value for sensor si is
available for reporting is t(ei(k)) = kT + ti as given in (57). As mentioned earlier, to
guarantee the consistency of the reported data, the control center requires that the
time distances between every two reporting events from two sensors be bounded by∣∣t(ei(k)) − t(e j(k))

∣∣ =
∣∣ti − tj

∣∣ ≤ d. This results in a constraint set C and its constraint
matrix D is given in (58). In case of a constraint violation, that is, the control center
does not receive data from one of the sensor(s) before the corresponding deadline, the
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data received in previous periods will be used in the coordinate calculations7.

D =

⎡⎢⎢⎢⎣
0 d d d
d 0 d d
d d 0 d
d d d 0

⎤⎥⎥⎥⎦ (58)

6.2 Tracking Error and Tracking Error Rate Prediction

However, if we consider the signal transmission time, or possible objects in between
the sensors and target, (57) should be changed into

t(ei(k)) = kT + ti + δi(k), (59)

where δi(k) is the time discrepancy caused by the Euclidean distance between the sen-
sor si and the location of the target at the k’th period. The data consistency constraint
thus becomes

∣∣t(ei(k)) − t(e j(k))
∣∣ ≤ d + |δi(k) − δ j(k)|. In this example, if we take into

account the travel time of ultrasonic distance measuring signals, the time of the event
that sensor si reports the distance value is

t(ei(k)) ≈ kT + ti + 2li/V, (60)

where li is the distance from sensor si to the target8. For instance, when the target
appears at the same site as sensor s1, we have l1 = 0, l2 = l3 = r and l4 =

√
2r, and

the actual data consistency requirement on t(ei(k)), i = 1, . . . , 4, becomes C′ whose
constraint matrix is D′ = D + �, where

� =

⎡⎢⎢⎢⎢⎣
0 2r

V
2r
V

2
√

2r
V

− 2r
V 0 0 2(

√
2−1)r
V

− 2r
V 0 0 2(

√
2−1)r
V

− 2
√

2r
V − 2(

√
2−1)r
V − 2(

√
2−1)r
V 0

⎤⎥⎥⎥⎥⎦ . (61)

Therefore, if the control center uses constraint matrix (58) to monitor the events from
the sensors, some timed data streams satisfying (58) may in fact correspond to in-
consistent data, that is, distances sensed in previous periods. Moreover, different loca-
tions of the target in the field result in different actual data consistency constraint sets
(similar to (61)). It is thus difficult for the control center to adjust the data consistent
constraints.

7Note that if the target is restricted to move only within the square field, the control center will only need
two distance values in order to decide the coordinates of the target. However, although four sensors bring
some redundancy, there can still be cases where less than two distance values come before deadlines. In this
case, the control center takes the values received in previous periods for approximation.
8We assume the speed of the moving target v is much smaller than the speed of the detecting signal V, that
is, v � V.
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Given the data consistency constraint matrix D in (58) under ideal assumptions,
and a real-world deviation D′ as the one in (61), some timed data streams that satisfy
C′ may violate C. These violations cause the imprecise coordinates (ones that have
blatant regressions due to data taken from previous periods). They are circled in
Figure 10(a), 10(c), and 10(e). From Theorem 4.2, the proportion of timed data
streams satisfying C′ that violate C is given 1 − (C ∼ C′). Again, 1 − (C ∼ C′) has
the largest value when the target is at one of the four corners of the field, where

1 − (C ∼ C′) ∈
[

0, 1 −
(

d

d + 2
√

2r/V

)(4−1)
]

≈ [
0, 1 − (75%)3] ≈ [0, 58%]. (62)

In fact, as can be observed from Figure 10, approximately 3 (marked with gray
circles) of the entire 8 reported coordinates in Figure 10(a), 3 of the 9 coordinates in
Figure 10(c), and 6 of the 17 coordinates in Figure 10(e) significantly deviate from
the actual target location, indicating tracking error rates of 37.5%, 33.3%, and 35.3%,
respectively. Note that these tracking error rates are not bounded by values indicated
by the violation of any piece of individual timing constraint. The maximum constraint
violation rate of individual timing constraint is only 1 − 75% = 25% in this example.

6.3 Discussions

Through the object tracking example presented in this section, we have shown that the
performances of real-time systems may deviate from their designs when they are de-
ployed in a real-world environment with some unanticipated physical factors ignored
by the original designs. In these cases, the similarity metric can give quantitative es-
timations about the violation rates of the original timing constraint set, that is, how
differently a system behaves from its original design.

It is worth pointing out that although the example only presents a tracking system
consisting of 4 sensors, the methodology can be extended to large and dynamic systems.
Because in any sampling period, only a small subset of all sensors are activated, and
the similarity bound in Theorem 4.2 gives a quick and easy way to get an estimation
of constraint similarity.

7. CONCLUSION

Real-world, real-time, and embedded systems may behave differently from specifica-
tion in the time domain: some systems deviate from the designs due to unpredictable
factors; some other soft real-time systems allow certain timing flexibilities that can of-
ten be utilized to improve other QoS properties of the systems. These deviations need
to be exploited in a quantitative and predictable manner. Specifically, if a set of timing
constraints are subject to imprecision or allowed to be modified, we need to measure
how much the deviation from the origin constraint set. Based on this need, in this ar-
ticle, we introduce a quantitative metric to compare the similarity between two timing
constraint sets. We based our study on feasible regions and proved that for a set of tim-
ing constraints, its feasible region is uniquely characterized by the constraint normal
form. The similarity metric is then defined based on the common feasible region of the
given two timing constraint sets to reflect their mutual satisfactions. Since directly
calculating the similarity metric is computationally intractable, we give a similarity
bound based on constraint set normal forms.

To demonstrate the capability of the new metric, we use an MPSoC system to illus-
trate how we may use the similarity metric to guide the design phases for reducing
system energy consumption where some timing constraints are intentionally relaxed
in order to improve the system’s QoS properties; moreover, we apply the theory of
timing constraint similarities to an object tracking system for predicting tracking
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Fig. 10. Actual trajectories and sensed coordinates of the moving target before and after the data consis-
tency constraints are modified.

error rates where some timing constraints are violated due to physical factors of the
environment in which the system is deployed. In both cases, the similarity metric
gives quantitative estimations about the satisfactions of the timing constraint set
in the original design. These examples lead to a more general conclusion that the
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similarity metric between timing constraint sets has a broad spectrum of applications
whenever measuring of timing constraint satisfactions is needed.

However, it is worth pointing out that constraint satisfication problem itself is an
NP-hard problem. The work presented in the article is not to solve the problem it-
self, rather to compare the similarities between two satisfiable regions defined by con-
straint sets and use the similarity matric to quantitatively measure the maximal di-
vation between two constraint sets. It is not difficult to see from the similarity bound
calculation formula (15) that the bound can be obtained in O(n2 log n).

As future work, we plan to investigate the effect of nonuniformly distributed timed
data streams on the evaluation of the similarity metric and its bound. Specifically, we
will consider combining our earlier work on nonuniformly distributed interval-based
events [Yu et al. 2008] with the computation of the similarity bounds. Intuitively, a
set of interval-based events {I1 = [I1, I1], . . . , In = [In, In]}, where I1, . . . , In ∈ �+, and
I1, . . . , In ∈ �+ are the lower and upper bounds of the corresponding time intervals, re-
spectively, can be represented as a hypercube in the n-dimensional space whose density
is determined by the joint distribution of all events. It will be revealing to understand
the relationship between this hypercube with the hyperprism of a timing constraint
set feasible region. This research is significant in deciding the satisfaction of timing
constraints by events of a more practical model. Regarding the quality of the similarity
bound, we realize that our bound may not be as tight, especially for higher-dimension
cases. We will further examine and improve the quality of the similarity bound.

In the example given in Section 5, we mapped the timing constraint set relaxiation
and QoS property trade-offs to an MILP problem. However, solving the MILP problem
is time consuming and can limit the applicability of our approach to runtime adapta-
tion when the problem size is large. Although how to improve the efficiency of solving
the MILP is not the focus of this article, we believe it is possible that we can develop
some type of heuristics to integrate the similarity metrics with a heuristic for solving
the MILP problem and speed up the performance. We will explore different heuristics
for MILP performance improvement in the future.

From the application perspective, we plan to apply the similarity metric to the
design of fault-tolerant homogeneous/heterogeneous manycore processors. Effective
defect tolerance techniques are essential to improve the yield of such complex in-
tegrated circuits. Previous attempts in this domain mainly focused on introducing
microarchitecture-level redundancy and providing a logical topology that is always iso-
morphic to the topology of the target design so that from the viewpoint of the operating
system and the programmers, they always see a unified logical topology regardless of
the various underlying physical topologies [Shivakumar et al. 2003; Zhang et al. 2008].
Two challenging tasks for the topology reconfiguration is how to compare the perfor-
mance of different logical topologies and how to effectively reconfigure them in order to
find the best logical topology in terms of the metrics used for comparisons. Intuitively,
from the timing perspective, one logical topology is better than the other if the tempo-
ral behavior of the former closely resembles the original specification than the later.
This is consistent with our earlier observations in establishing the timing constraint
set similarity metric. In the future, we plan to investigate the possibilities of applying
the similarity metric in comparing alternative logical topologies and finding efficient
heuristics for optimizing temporal resemblance.
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