
Hungarian Algorithm Based Virtualization to
Maintain Application Timing Similarity for

Defect-Tolerant NoC
Ke Yue, Frank Lockom, Zheng Li, Soumia Ghalim, and Shangping Ren

Department of CS
Illinois Institute of Technology

Chicago, Illinois 60616
Email: {kyue, flockom, zli80, sghalim, ren}@iit.edu

Lei Zhang and Xiaowei Li
Key Laboratory of CSA

Institute of Computing Technology
Chinese Academy of Sciences
Email: {zlei, lxw}@ict.ac.cn

Abstract—Homogeneous manycore processors are emerging in
broad application areas, including those with timing require-
ments, such as real-time and embedded applications. Typically,
these processors employ Network-on-Chip (NoC) as the com-
munication infrastructure and core-level redundancy is often
used as an effective approach to improve the yield of manycore
chips. For a given application’s task graph and a task to core
mapping strategy, the traffic pattern on the NoC is known a
priori. However, when defective cores are replaced by redundant
ones, the NoC topology changes. As a result, a fine-tuned program
based on timing parameters given by one topology may not meet
the expected timing behavior under the new one. To address
this issue, a timing similarity metric is introduced to evaluate
timing resemblances between different NoC topologies. Based on
this metric, a Hungarian method based algorithm is developed
to reconfigure a defect-tolerant manycore platform and form a
unified application specific virtual core topology of which the
timing variations caused by such reconfiguration are minimized.
Our case studies indicate that the proposed metric is able
to accurately measure the timing differences between different
NoC topologies. The standard deviation between the calculated
difference using the metric and the difference obtained through
simulation is less than 6.58%. Our case studies also indicate
that the developed Hungarian method based algorithm using the
metric performs close to the optimal solution in comparison to
random defect-redundant core assignments.

I. INTRODUCTION

As technology advances, manycore architectures are becom-
ing mainstreams for a large spectrum of applications, including
real-time and embedded applications. As there are many
cores on-chip, such architectures typically employ Network-
on-Chip (NoC) as a scalable communication backbone among
processing cores. However, many challenges are yet to be
tackled for the design of NoC-based manycore processors.
Manufacturing defects and transistor wear-outs are among
the top list. According to Sperling’s report [1], for a Cell
processor, without considering defect tolerance during the
architecture design phase, even under the best case, the yield
can be as low as only 10% to 20%.

The research is supported by NSFC CNS 1018731, NSF Career 0746643,
NSFC 60906018 and NSFC 61173006.

As there are many light weighted cores on-chip, and each
core occupies only a small area of the chip footprint, core-level
redundancy is often used as an efficient technique to overcome
the NoC chip yield issue [2]. In particular, if C cores are
expected to be provided to customers, R redundant cores will
be added on the chip. Cores which fail due to defect or aging
can be replaced with a redundant core, thus guaranteeing the
demanded computing capability. However, when a defective
core is replaced with a redundant core, it is possible that the on
chip topology, i.e., the interconnect relationship among cores
are changed, for example from a regular 2D mesh topology to a
irregular topology. The underlying NoC topology with possible
defective cores is called a physical topology. Different chips
may have different physical topologies with different failure
bitmaps. It will be a great burden for application developers
as they have to face various topologies to design, deploy and
optimize their programs. Topology virtualization is proposed
to isolate various underlying physical structures, and provide
programmers with a unified interface [3].

Prior research on manycore topology virtualization mainly
focused on general purpose computing domain and the meth-
ods proposed intend to achieve better performance in terms of
communication latency and network throughput [2], [4], [3].
However, the goals differ from the above for applications with
timing requirements. For a real time application, rather than
performance, the most important property is its predictability.
That is, its functional and timing behavior should be as de-
terministic as system specifications require. Therefore, timing
similarity instead of high performance is preferred to avoid
introducing extra cost in redesign, re-implementing, retesting,
and re-certifying the rest of the system when defect cores are
replaced by redundant ones.

For a given application that has already been mapped to a
manycore platform, if some of the cores on which application
tasks are deployed become defective, with core-level redun-
dancy, redundant cores are used to replace the defect cores.
However, this reconfiguration will change the physical distance
between two communicating tasks, which may further impact
the application’s timing behavior and cause timing variations.

Therefore, the question is how to select redundant candidates
for the defect cores that minimize the timing variation.

When on a small scale NoC, i.e., both the number of
redundant cores R and the number of defect cores D are small,
we can traverse all the choices and find the optimal one offline
with time cost of O(RD). However, in large scale manycore
systems, for example, when there are thousands of cores per
chip, the time cost is unaffordable even if it is computed
offline.

In this paper, we focus on homogeneous manycore plat-
forms and have made two major contributions: first, we have
developed a metric that measures timing similarities between
two different topologies upon which a real-time application
is deployed. Second, we have developed a polynomial time
algorithm to form a defect-free virtual topology that is most
similar, with respect to the metric developed, to the applica-
tion’s initial reference topology.

The rest of the paper is structured as follows. Prior research
is discussed in Section II. Section III discusses how to estimate
timing behavior changes caused by defective core replacement.
Section IV gives a brief background on generic Assignment
Algorithm (also known as Hungarian method). Our proposed
algorithm based on the Hungarian method to solve the replace-
ment problem is presented in Section V. The evaluations of
our work are shown through experiments in VI. Finally, we
conclude and point out future work in Section VII.

II. RELATED WORK

The NoC topology virtualization problem for general pur-
pose computing has recently drawn great attention from the
research community. Zhang et. al in [2], [3] studied the
performance degradation of virtual topologies when compared
to the topology initially designed. A heuristic approach called
Row Rippling Column Stealing (RRCS) is proposed in [2]
for homegenerous manycore processors. The essence of the
heuristic is to maintain the physical regularity of reconfigured
virtual topologies in both row and column units, and hence
to maximize performance. They further extended the work to
handle heterogeneous manycore processors [4].

Different optimization goals when reconfiguring the NoC
topology have also been considered. For instance, Srini-
vasan [5] gives the NMAP algorithm to minimize the av-
erage communication delay with the bandwidth constraints
for NoC platforms; Hung [6] proposes IP virtualization and
placement algorithm to achieve a thermally balanced design
that minimizes temperature and energy consumption; and
Hu [7] presents an efficient branch-and-bound algorithm to
minimize the total communication energy through bandwidth
reservation. As pointed out by Flich in [8] the three key
metrics: performance, fault-tolerance (including yield), and
power consumption are becoming the major concerns on the
design of NoC systems. Research in this area have shown that
topology virtualization is a promising technique to provide a
unified solution to address all the three key issues.

Different from the prior work listed above, we focus on
topology reconfiguration for applications with timing con-

straints. For these types of applications, rather than perfor-
mance, the timing predictability and determinism are the
paramount requirements. Hence, the reconfiguration objective
is to use redundant cores provided on the chip to replace
defective cores with the constraint of maximizing the timing
resemblance of the newly configured topology to the initial
one.

It is not difficult to see that the problem of finding appropri-
ate redundant cores to replace defect cores belongs to the class
of the assignment problems [9]. As a canonical solution to
the assignment problem, the Hungarian method, which is first
proposed by Harold [9] has been widely used. For instance,
Jung-Hoon [10] uses it for solving resource allocation problem
in mobile communication system and Gungor [11] applies it
for multiple criteria assignment problems.

However, the topology reconfiguration problem with timing
similarity constraint we are to address is not identical to
the general assignment problem, in which, assignments are
independent of each other and the cost of each assignment is
fixed. In our problem, if more than one defective core exists,
the cost of one’s replacement may be dependent with others.
We will address this issue in section V.

III. TIMING SIMILARITY BETWEEN TWO VIRTUAL NOC
TOPOLOGIES FOR A GIVEN REAL-TIME APPLICATION

In this section, we give a motivating example, define the
timing similarity metric and give the problem formulation.

Before giving an example, we first define our application
and NoC models.

Definition 1 (NoC): We represent the NoC as an array of
physical cores under mesh topology and deterministic XY
routing where
• C = {C0, C1, ..., CM} are the cores provided by the chip.

We use C(i) and Ci to denote virtual core and physical
core i respectively.

• R = {R0, R1, ..., RN} are the redundant cores provided
by the chip.

• Virtual Topology T : C → C∪R is an injective mapping
from virtual cores to physical cores.

• Hk
(i),(j) is the number of hops from C(i) to C(j) along the

physical path of the traffic using XY routing algorithm
for a given virtual topology T k.

�
Definition 2 (Mapped Application Task Graph): A

directed acyclic graph A = (J,E) mapped to a virtual
topology where each vertex ji ∈ J represents the task
mapped to virtual core C(i) and each edge eij ∈ E is a data
dependency between ji and jj . The volume of data sent along
the directed edge eij is given by v(eij). �

We make two assumptions regarding the NoC. First, only
the cores C become defective. Second, there is no contention
in the network. In other words, the NoC bandwidth is suffi-
ciently large. When there is no network contention, the hop
count becomes the most important metric for communication
times.

A. A Motivating Example

For a given 3x3 NoC with 3 redundant cores as shown in
Fig.1(c). If, for instance, core C4 is defective, the remaining
defect-free cores form a new physical topology. We can
virtualize the defect-free cores and provide applications a
virtual 3 × 3 mesh topology. There are several ways to do
so, for instance, in Fig.1(c), the three redundant cores, R0,
R1, or R2, can be used to replace the defective core C4,
and hence generate three different virtual topologies. Even
though applications are given a unified 3 × 3 mesh, different
virtual topologies have different properties, such as latency
and throughput.

For instance, given the application and its initial mapping
shown in Fig.1(a), consider if the physical core C4 is defective.
It can be replaced by one of the redundant cores R0, R1, or
R2. Depending on which redundant physical core is used, the
resulting topologies’ hop count between the virtual cores are
different under XY routing(Table I). From the table it is clear
that using R0 as the virtual core C4 is the best choice if the
similarity metric is hop count.

Furthermore, if an application is deployed on a topology,
the impact on the application of replacing a defective core by
different redundant cores also varies.

Fig. 1: Mapping application to cores

Generally, for a given application that is mapped to |J | cores
supported by a physical topology with |R| redundant cores,
if among the |J | cores, p (p ≤ min{|J |, |R|}) cores become
defective, to replace only those defective cores with redundant
cores, we have

(|R|
p

)
p! number of different choices to form a

new virtual topology. Then the question is: which one should
we choose?

Traffic Between
Virtual Cores

Corresponding
Physical Cores

Hop
Count

C(1) → C(4) C1 → R0 2
C(1) → C(4) C1 → R1 3
C(1) → C(4) C1 → R2 4

TABLE I: Virtualizing different redundant cores for C(4)

B. Similarity Metric

In order to analyze the timing resemblance between a
reference topology where there is no defect cores and a virtual
topologies, the timing behavior of a NoC-based manycore
system upon which a specific application is deployed has
to be first defined. As for homogeneous manycore systems,
processor speeds are the same. Hence, on-chip communication
becomes a dominant factor that differentiates various virtual
topologies’ timing behavior.

We use traffic time delay F(i),(j) to quantify the communi-
cation time cost from virtual cores C(i) to C(j). The formal
definition is given below:

Definition 3 (Traffic Time Delay): For a given application
and virtual topology T k, the traffic time delay from virtual
core C(i) to core C(j) is defined as

F k
(i),(j) = v(eij) +Hk

(i),(j) (1)

�
For two different virtual topologies, T k and T r, their traffic

time delay differences from virtual core C(i) to C(j) can be
calculated by (2)

∆k,r
(i),(j) = |F k

(i),(j) − F
r
(i),(j)| (2)

Clearly, the smaller the traffic time delay differences among
all virtual core pairs, the higher the timing similarity among
the two topologies. We use normalized average value (Ave)
and normalized variation (V ar) to model the traffic time delay
difference of the entire topology. Their definitions are given
below:

Definition 4: (Normalized Average Traffic Time Delay Dif-
ference)

Given an application, a new topology T k and a reference
topology T r, the normalized average traffic time delay differ-
ence is given by (3)

Avekr =

∑
eij∈E

∆k,r
(i),(j)

Ψr|E|
(3)

where Ψr is the average traffic time delay of the reference
topology T r given by (4).

Ψr =

∑
eij∈E

F r
(i),(j)

|E|
(4)

�
Definition 5: (Normalized Average Variation of Traffic Time

Delay Difference)

Given an application, a new topology T k and a reference
topology T r, the normalized variation of traffic time delay
difference is given by (5)

V arkr =

√√√√√√√
∑

eij∈E
(
∆k,r

(i),(j)

Ψr
−Avekr)2

|E|
(5)

where Ψr is given by (4).
�

Based on the traffic time delay difference between different
topologies, we define virtual topology timing similarity as
weighted sum of normalized average difference and variation.
The formal definition is given below:

Definition 6: (Virtual Topology Timing Similarity)
Given an application, a new topology T k and a reference

topology T r, their timing similarity χ(T k
r) is defined by (6)

χ(T k
r) = wa ×Avekr + wv × V arkr (6)

where wa and wv (wa + wv = 1) are the weights applied to
the average difference and average variation, respectively.

�

C. Problem Formulation

With the similarity metric, we formulate the problem the
paper is to address as follows:

Problem 1: For a given reference topology T r on which a
given application A is deployed, if there are cores used by the
application A that become defective, construct a virtual topol-
ogy T opt with defective cores being replaced by redundant
cores and satisfying the requirement (7)

χ(T opt
r) = min{χ(T k

r)} (7)

�

IV. THE HUNGARIAN METHOD

For self-containment, in this section, we briefly introduce
the assignment problem and the Hungarian method that solves
the assignment problem.

The assignment problem can be stated as [9]: there are n
workers and k jobs, where k ≤ n. Each job can only be
assigned to a single worker. The time taken by each worker
to finish a job is independent and can be different. The
assignment problem is to find a worker to job assignment so
that the total time taken to finish all the jobs is minimized.

The Hungarian method [9], [10], [11] solves the assignment
problem in two steps:

Step 1 : constructs a cost matrix Mn×n where mij is the
time cost for worker i (1 ≤ i ≤ n) to work on job j
(1 ≤ j ≤ k). If n 6= k, i.e., the numbers of workers
and the number of jobs are not the same, we augment
the matrix M to a square one by adding (n − k)
number of columns filled with zeros.

Step 2 : uses equivalent matrix reduction to obtain the op-
timal assignment with respect to the cost matrix [9]

As an example, assume we have three workers W1, W2,
and W3, and three jobs J1, J2, and J3. It takes W1 25, 40,
and 35 time units to finish job J1, J2, and J3, respectively;
for W2, 40, 60, and 35 and W3, 20, 40, and 25 to finish the
three jobs, respectively. We have the cost matrix M3×3 as:

M3×3 =

 25 40 35
40 60 35
20 40 25

By iteratively reducing the value in rows and columns, the

Hungarian method is able to get the optimal assignment in
O(n3) time [12].

For the given cost matrix, the reduced matrix of running the
Hungarian Algorithm is

M3×3 =

 0 0 10
5 10 0
0 5 5

Hence, the optimal assignment is W1, W2, and W3 for J2, J3,
and J1, respectively.

V. HUNGARIAN METHOD BASED VIRTULIZATION
ALGORITHM

As formulated in Section III-C, we need to assign appro-
priate redundant cores to replace defect cores for a given
application so that the communication time change among
tasks is minimized. It is not difficult to see that, it is also
a type of assignment problem.

Recall that the first step in using the Hungarian method
to solve an assignment problem is to form a cost matrix. It is
worth pointing out that in the worker/job assignment problem,
the time cost for a worker i to perform a job j is fixed and
independent from how the job is assigned to other workers.

Hence, in order to use the Hungarian method, we have
to first construct a cost matrix. For defect-redundant core
assignment problem, the related cost of replacing defective
core d with redundant core r , i.e., Mdr is the communication
time delay difference among all the virtual communicating
cores. Unfortunately, if there is more than one defective core
to be replaced, we will not be able to construct the matrix due
to lack of information in computing the traffic delay difference
χ given by (6).

For example, if physical cores C4, C5 and C7 in Fig. 1
are defective then redundant cores R0, R1, R2 can be used
replace them. We need to build up a 3 × 3 matrix, and the
entry in the first row and first column indicating the timing
difference when using physical core R0 to replace physical
defective core C4, which needs the traffic time delay between
virtual core C(7) and C(5) after reconfiguration. Unfortunately,
these values are not known until we know which redundant
cores are assigned to the defective cores.

One way to overcome the problem is to assume that there
is only one defective core at a time. In other words, when
deciding the cost values for replacing defective core f , we treat
the other defective cores (if any) as normal defect-free cores.
Using the above example, when filling the entry indicating

physical core R0 to replace defective core C4, we assume
physical cores C7 and C5 are not defective. Once the cost
matrix with respect to communication time delay differences
is obtained, we can use the Hungarian method to find the
optimal replacement for the defective cores. The Hungarian
method based virtualization (HMBV) algorithm is given in
Algorithm 1.

Algorithm 1 HMBV Algorithm(T r)

1: for each defective core Ci do
2: for each redundant core Rj do
3: calculate χ(T i

r)
where T i maps core C(i) to Rj

4: Mij ← χ(T j
i)

5: end for
6: end for
7: apply Hungarian Algorithm to obtain the solution for cost

matrix M

The steps 1 − 6 are to construct the cost matrix which
has time complexity of O(n2), and step 7 uses the general
Hungarian algorithm to find the defect-redundant mapping
solution which is of time complexity O(n3). Therefore, the
time complexity for the algorithm is O(n3).

Let us use the example shown in Fig. 1 to illustrate
the algorithm. Again, assume the core C4, C5 and C7 are
defective, steps 1− 6 in algorithm 1 generate the cost matrix

M3×3 =

Defect Core R0 R1 R2

C4 0.2 0.2727 0.3333
C5 0.0929 0.1245 0.1899
C7 0.1111 0.1724 0.2429

Apply the Hungarian method to the cost matrix, we have that
the new configuration, where R0 is used to replace C4, R2 for
C5, and R1 for C7, respectively, most resembles to the initial
configuration with respect to the communication time delays
among communicating tasks.

Discussion
Admittedly, the cost matrix generated under the assumption,

i.e., when computing the cost values for a specific defective
core, all other defective cores are treated as defect-free, may
not reflect the whole property of the problem we are to
solve. It is not difficult to see that the defect-redundant core
assignment problem in its original form is of time complexity
O(|R|D), where D and |R| are the number of defect cores
and redundant cores, respectively. The HMBV algorithm of
complexity O(|R|3), hence, does not generate the optimal
solution for our defect-redundant core assignment problem.
In the next section, we will empirically evaluate both the
similarity metric and the HMBV algorithm.

VI. EVALUATION

In this section, we perform two sets of experiments. First
we evaluate the metric given in (1) by comparing it with
the simulated communication time. Second we evaluate the

Fig. 2: Model Accuracy

remapping obtained by the Hungarian algorithm by comparing
it to both the optimal solution and a randomly generated
solution.

A. Experiment Setup

NIRGAM (NoC Interconnect Routing and Application
Modeling) [13] is a modular and cycle accurate simulator
developed in SystemC. In NIRGAM, a 2D NoC can be
simulated by different design options, e.g., virtual channels,
clock frequency, buffer parameters, routing mechanisms and
applications patterns, etc. Each NIRGAM tile consists of
various components, such as input channel, controller, virtual
channel allocator, output channel controller, and IPcores. Each
IPcore is attached to a router/switch by means of a bidirec-
tional core channel. Wormhole switching and deterministic XY
routing are used on the mesh.

In our experiments we use TGFF[14] to generate a task
graph and create a random mapping of the task to a 5x5 mesh.
The mapping is random because we do not assume anything
about the original mapping of the application and only aim to
achieve similarity. We assume that there is an extra column
of cores located on the right side of the chip to provide n
redundant cores for an n × n virtual topology. The location
and number of the redundant cores is not important however
as the reconfiguration algorithm is aware of their locations.

To satisfy the assumption that no contention exists in the
network, the flit injection rate of each task is sufficiently low so
that each router can handle all of the traffic in the application
without contention.

B. Metric Evaluation

In this experiment we show that the metric given in (1) is
a good model for the communication time in the application.
For an edge in a application eij ∈ E with data volume v(eij)
the communication time is the amount of time from when ji
begins transmission of data to when jj receives the last flit in
v(eij). Since the NoC is homogeneous the execution time is
the same on any core. Therefore with similar communication
times along every edge the start and finish time of tasks will
be similar.

Fig. 3: Algorithm Evaluation

Fig. 2 shows the entire solution space i.e. all T r for
a specific set of defective cores for a specific application.
The line Metric Similarity is calculated using (6) whereas
the line Simulated Communication Time Similarity uses (6)
but subsitutes the actual simulated communication time using
NIRGAM for (1). The standard deviation of the difference
between these two data sets is 6.58%.

C. Algorithm Evaluation

In this experiment we compare the HMBV algorithm to both
the optimal solution and a random solution. For a specific
application we chose five random defective core sets for
each number of possible defective cores. For each defective
set we find the optimal solution, the HMBV solution and a
random solution. For each solution we calculate its similarity
to the defect-free mapping. As can be seen from Fig. 3, the
HMBV algorithm. performs close to the optimal solution in
comparison to a random i.e. average solution.

VII. CONCLUSION

Virtualization in manycore systems in presence of man-
ufacturing defects and device wear-outs for real time and
embedded applications is very complex and it depends heavily
on the desired hardware architecture, timing requirements, and
the on-chip redundancy distributions. By taking these factors
into considerations, the developed method based on Hungarian
algorithm allows us to find the virtual topology that is most
similar, in terms of their timing behaviors captured by their
task-to-task communication times, to the reference topology
an application is initially designed on. The simulation results
show the effectiveness of our approach.

The research presented in the paper is only the first
step toward applying virtualization technologies to real-time
and embedded applications. We are all aware that for hard
real-time applications, minimizing task-to-task communication
time change may not guarantee stringent timing properties
required by these applications. Our immediate next steps are
to remove our assumption of no contention in the network, to
study how reconfiguration may impact hard real-time applica-
tions, and investigate virtualization techniques that guarantee

deadline satisfactions. Real-time and embedded applications
often have other resource constraints, such as peak temperature
and energy consumption constraints, the virtualization problem
becomes more challenging when these concerns must be taken
into consideration. This is another area of our future study.
Further extension to the work is to address these concerns for
heterogeneous manycore systems.

REFERENCES

[1] E. Sperling, “Turn down the heat. . . please,” March 2007.
[2] L. Zhang, Y. Han, Q. Xu, and X. Li, “Defect tolerance in homogeneous

manycore processors using core-level redundancy with unified topology,”
in Proceedings of the conference on Design, automation and test in
Europe. ACM, 2008, pp. 891–896.

[3] L. Zhang, Y. Han, Q. Xu, X. Li, and H. Li, “On topology reconfiguration
for defect-tolerant NoC-based homogeneous manycore systems,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17,
no. 9, pp. 1173–1186, 2009.

[4] L. Zhang, Y. Yu, J. Dong, Y. Han, S. Ren, and X. Li, “Performance-
asymmetry-aware topology virtualization for defect-tolerant NoC-based
many-core processors,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2010, pp. 1566–1571.

[5] G. D. M. Srinivasan Murali, “Bandwidth-Constrained Mapping of Cores
onto NoC Architectures,” in Proceedings of the conference on Design,
automation and test in Europe, 2004, pp. 1530–1591.

[6] W. Hung, C. Addo-Quaye, T. Theocharides, Y. Xie, N. Vijaykrishnan,
and M. J. Irwin, “Thermal-aware ip virtualization and placement for
networks-on-chip architecture,” Computer Design, International Con-
ference on, vol. 0, pp. 430–437, 2004.

[7] R. M. J. Hu, “Energy-Aware Mapping for Tile-based NOC Architectures
Under Performance Constraints,” in Proceedings of the ASP-DAC 2003,
ser. CODES/CASHE ’98, 2003, pp. 233–239.

[8] J. Flich, S. Rodrigo, J. Duato, T. Sodring, A. Solheim, T. Skeie, and
O. Lysne, “On the potential of noc virtualization for multicore chips,”
Complex, Intelligent and Software Intensive Systems, International Con-
ference, vol. 0, pp. 801–807, 2008.

[9] H. Kuhn, “The Hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[10] O. Jung-Hoon, Noh. Seong-Jun, “Distributed SC-FDMA Resource Allo-
cation Algorithm Based on the Hungarian Method,” in 2009 70th IEEE
on Vehicular Technology Conference, 2009, pp. 1–5.

[11] M. Gungor, I. Gunes, “Fuzzy multiple criteria assignment problems for
fusion: the case of Hungarian algorithm,” in 2000 3th IEEE International
Conference on Information Fusion, 2000, pp. 408–412.

[12] J. Munkres, “Algorithms for the Assignment and Transportation Prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[13] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan,
“NIRGAM: a simulator for NoC interconnect routing and application
modeling,” Design Automation and Test in Europe (DATE), Nice, France,
2007.

[14] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of the 6th international workshop on Hardware/software
codesign, ser. CODES/CASHE ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 97–101.

