
Model-Driven Development with eUML-ARC

Kevin Marth and Shangping Ren
Illinois Institute of Technology

Department of Computer Science
Chicago, IL USA

martkev@iit.edu

ABSTRACT
Model-Driven Development (MDD) with eUML-ARC uses
a synthesis of executable UML and the ARC (Agent, Role,
Coordination) programming model. An entity in the ARC
model is composed of concurrent role-based agents, enabling
collaboration-based design and exposing both inter-entity
and intra-entity parallelism, thereby facilitating the devel-
opment of software systems that execute efficiently on multi-
core hardware. Concurrency in eUML-ARC is based on
the Actor model, which provides a simpler and more for-
mal treatment of concurrency than found in standard UML
or other approaches to executable UML. The coordination
required by collaboration-based designs is separated from
other computation and enacted by coordination agents upon
coordinated role-based agents. In this paper, we examine
the distinguishing features of the eUML-ARC approach to
MDD, including the support for hierarchical state machines,
the simplified concurrency model, the structure of the ARC
model, and coordination viewed as an orthogonal concern.
As a case study, a benchmark system is specified as an
eUML-ARC model and deployed to a multi-core computer.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.2.2 [Design Tools and
Techniques]: Computer-Aided Software Engineering; D.3.3
[Programming Languages]: Language Constructs and
Features

General Terms
Design, Languages

Keywords
Actor Model, Coordination, Hierarchical State Machine,
Executable UML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

1. INTRODUCTION
Multi-core processors have entered the computing main-

stream, and many-core processors with 100+ cores are pre-
dicted within this decade. The absence of a clear software
strategy for exploiting this increasing hardware parallelism
has convinced leading computer scientists that many prac-
ticing software engineers cannot effectively program state-of-
the-art processors [9]. We believe that a basis for simplifying
parallel programming exists in established software technol-
ogy, including the Actor model [1] and executable UML.
The advent of multi-core processors has galvanized interest
in the Actor model, as the Actor model has a formal founda-
tion and provides an intuitive parallel programming model.
A leading parallel research program has advocated parti-
tioning the “software stack” into a productivity layer and
an efficiency layer [8]. The efficiency layer maps a software
system developed in the productivity layer to an efficient
parallel implementation, and the productivity layer enables
mainstream programmers to develop software systems while
being shielded from the parallel hardware platform. Thus,
to leverage the Actor model, software systems should be
specified using a programming model that maps readily to
the Actor model and its treatment of parallelism.

The separation of platform concerns is the foundation of
the Model-Driven Architecture (MDA) [6]. The MDA is
one approach to Model-Driven Development (MDD). When
using MDD, a model of a software system is the primary
development artifact throughout the lifetime of the system,
from requirements analysis through deployment. A model
specification is both abstract and precise, enabling the gen-
eration of other development artifacts, such as source code.
The MDA is based on a platform-independent model (PIM)
of the software system and the translation from a PIM to
a platform-specific model (PSM) with specific choices of
software platform technology and underlying hardware plat-
form. A PSM is translated to a platform-specific implemen-
tation (PSI) for deployment as an executable.

Executable UML uses specialized profiles of the Unified
Modeling Language [13] to support the MDA and enable
the specification of an executable PIM for a software sys-
tem, since executable UML requires that the PSM for a
software system be generated through automated transla-
tion (not manual elaboration) of the PIM for the system. An
ideal executable UML specification is an abstract PIM that
includes only the precise domain-level logic required to real-
ize a deployable software system, and an appropriate model
compiler is responsible for realizing a PSI directly from the
PIM. The existing approaches to executable UML have pri-

1877

marily addressed independence from the software platform,
including middleware and software architectures (e.g. client-
server, 3/N-tier, peer-to-peer). The parallelism available on
the hardware platform has not been a primary considera-
tion. It is simply assumed that an executable UML model
compiler will efficiently utilize the hardware platform and
effectively coordinate and synchronize collaborating parallel
objects, using only stereotypes and tags applied within the
model (by modelers who may not be skilled in parallelism),
along with low-level UML models of hardware resources.

We believe that a more effective approach to executable
UML enables a model of a software system to directly expose
abstract parallelism. In this paper, we present the eUML-
ARC approach, which uses a synthesis of executable UML
(eUML) and the ARC (Agent, Role, Coordination) program-
ming model. An entity in the ARC model is composed of
one intrinsic agent and multiple extrinsic, role-based agents.
An agent is an active object whose behavior is specified in a
hierarchical state machine (HSM). An agent maps directly
to an actor in the Actor model. The agents that compose
an entity execute concurrently, exposing both inter-entity
and intra-entity parallelism, thereby facilitating the devel-
opment of software systems that execute efficiently on par-
allel hardware. Concurrency in eUML-ARC is based on the
Actor model, which provides a simpler and more formal
treatment of concurrency than found in standard UML or
other approaches to executable UML. Role-based agents en-
able collaboration-based design. The coordination required
by collaborating role-based agents is separated from other
computation and enacted by coordination agents.

The following sections examine the distinguishing features
of eUML-ARC, including HSM support, the concurrency
model, the structure of the ARC model, and coordination
viewed as an orthogonal concern. As a case study, a bench-
mark system is specified as an eUML-ARC model and de-
ployed to a multi-core computer. Section 2 surveys the
eUML-ARC modeling language, focusing on HSM support
and the concurrency model. Section 3 examines the ARC
programming model. Section 4 presents an example and
initial empirical evidence of the effectiveness of the ARC
programming model on multi-core hardware. Section 5 con-
cludes the paper.

2. THE MODELING LANGUAGE

2.1 Related Work
Several approaches to executable UML exist [5][7][10], and

each approach enables a software system to be specified by
using the following process.

• The software system is decomposed into domains.

• Each domain is modeled in a class diagram.

• Each class is modeled with structural and behavioral
properties, including associations, attributes, opera-
tions, and a state machine.

• Each operation method and state machine action is
implemented in a formal action language.

In xUML [5] and xtUML [10], only simple state machines
are supported, and many HSM features are not available.
In contrast, all standard UML HSM features are supported

in eUML-ARC, with the exception of features that imply
concurrency within a HSM. The foundational standard for
executable UML models (fUML) [14] specifies the semantics
of the UML constructs considered to be used most often.
As such, the fUML specification does not address all state
machine features and explicitly does not support state ma-
chine features such as change events and time events. In
eUML-ARC, concurrency is based on a formal model (the
Actor model), while other approaches to executable UML
treat concurrency only as an operational requirement for
the model compiler to synchronize the conceptual threads
of control associated with active class instances.

2.2 HSM Support in eUML-ARC
HSM support in eUML-ARC exists because hierarchical

states facilitate programming by difference, where a substate
inherits behavior from superstates and defines only behavior
that is specific to the substate. A design invariant can be
specified once at the appropriate level in a state hierarchy,
eliminating redundancy and minimizing maintenance effort.
Standard UML supports a variant of Harel statecharts [3]
that enables behavior to be specified using an extended HSM
that combines Mealy machines, where actions are associated
with state transitions, and Moore machines, where actions
are associated with states. The support for HSM events,
states, and transitions in eUML-ARC is described here.

2.2.1 Events
As in the Actor model, agents in eUML-ARC communi-

cate using only asynchronous message passing. A message
received by an agent is dispatched to its HSM as a signal
- a named entity with a list of parameters. eUML-ARC
supports three kinds of HSM events:

• a signal event that occurs when a signal is dispatched,

• a time event that occurs when a timer expires after a
specified duration, and

• a change event that occurs when a Boolean expression
becomes true.

Events are processed serially and to completion. Although
there can be massive parallelism among agents, processing
within each agent is strictly sequential.

2.2.2 States
A state in a HSM can have several features: entry actions,

exit actions, transitions, deferred events, and a nested state
machine. Entry actions and exit actions are executed when
entering and exiting the state, respectively. Deferred events
are queued and handled when the state machine is in another
state in which the events are not deferred. A state in a state
machine can be either simple or composite. A composite
state has a nested state machine.

A composite state in a standard UML HSM can have mul-
tiple orthogonal regions, and each orthogonal region has a
state machine. Orthogonal regions within a composite state
introduce concurrency within a HSM, since the state ma-
chine within each region of a composite state is active when
the composite state is active. Standard UML also supports
a do activity for each state that executes concurrently with
any do activity elsewhere in the current state hierarchy. The
Actor model does not allow concurrency within an actor. To

1878

align with the Actor model, eUML-ARC disallows concur-
rency within a HSM and does not support do activities or
orthogonal regions. In practice, orthogonal regions are often
not independent and share data. The UML standard states
that orthogonal regions should interact with signals and
should not explicitly interact using shared memory. Thus,
replacing orthogonal regions in eUML-ARC by coordinated
peer agents is appropriate.

2.2.3 Transitions
A transition in a state has several parts: an event trigger,

a guard condition, a target state, and transition actions.
The event trigger is an instance of one of the three kinds of
events described above that initiates the transition. A trig-
gerless transition is initiated as soon as any entry actions
in the state are completed. The guard condition is an op-
tional Boolean expression associated with the event trigger
that enables the transition when the expression evaluates
to true. If an event trigger occurs but its associated guard
evaluates to false, the event is discarded. The target state
is the state entered when the transition occurs. The transi-
tion actions are executed after the exit actions of the source
state are executed and before the entry actions of the target
state are executed. The inheritance of behavior in a HSM
implies a distinction between the current state of the HSM
and the source state that defines a transition applicable in
the current state.

The UML standard defines four kinds of transitions that
are all supported in eUML-ARC: internal, external, local,
and start. Internal transitions are handled within a state,
without causing a change in state and without causing ex-
ecution of entry/exit actions for the state. External tran-
sitions always cause the exit actions of the source state to
be executed and the entry actions of the target state to be
executed. Local transitions are identical to external transi-
tions except when the source and target states have a direct
lineage. A local transition does not cause execution of exit
actions for the source state if the target state is nested in
the source state, and a local transition does not cause exe-
cution of exit/entry actions for the target state if the source
state is nested in the target state. Each composite state has
a start transition triggered after the execution of any entry
actions for the composite state when the composite state is
the target state of a transition. A start transition selects a
nested substate as the next target state of the transition as it
continues until a simple state is reached. A start transition
can have transition actions but cannot have an event trig-
ger or a guard condition. The following examples illustrate
transitions specified in eUML-ARC.

• An external transition triggered by signal X, with guard
i > 0, target state S1, and action a():
event X [i > 0] (E)-> S1 { a(); }

• A local transition triggered by signal Y, with no guard,
target state S2, and no action: event Y (L)-> S2;

• An internal transition triggered by signal Z, with guard
j < 0 and actions b();c():
event Z [j < 0] { b(); c(); }

• A start transition with target state S3 and no action:
(S)-> S3;

2.3 Concurrency
The treatment of concurrency in standard UML is very

complex. An active object (agent) has a dedicated concep-
tual thread of control, while a passive object does not. The
calls to operations for active classes and passive classes can
be either synchronous or asynchronous, and it is possible
to combine operations and a state machine when defining
the behavior of an active class. An active object in stan-
dard UML can be either sequential or concurrent, depending
upon whether it has a state machine and whether the state
machine uses operation calls as state machine events. A pas-
sive object can also be either sequential or concurrent, since
each operation of a passive class is defined to be sequential,
guarded, or concurrent.

The treatment of concurrency in existing executable UML
approaches (including fUML) is simpler, but it is still pos-
sible to have multiple threads of control executing concur-
rently within an agent. The treatment of concurrency is
further streamlined in eUML-ARC.

• A passive class can define only synchronous, sequential
operations.

• A passive object is encapsulated within one agent, and
an agent interacts with its passive objects only through
synchronous operation calls.

• Agents interact only through asynchronous signals sent
to state machines, where signal events are interleaved
serially with other HSM events.

This treatment of agent interaction ensures that agents are
internally sequential and avoids the complexities of concur-
rent access to the internal state of an agent. With these
simplifications, eUML-ARC aligns with the Actor model and
does not require the modeler to explicitly synchronize con-
current access to shared memory.

3. THE ARC PROGRAMMING MODEL
It has been argued that if concurrency was intrinsically

difficult, humans would not function well in a physical world
filled with concurrent activity. Of course, humans and other
entities, both animate and inanimate, often successfully play
several roles concurrently. The roles played by an entity
that are of interest to observers determine the points-of-
view from which the entity is considered when developing a
software system. Consequently, the role concept has signifi-
cantly influenced software development for several decades.
Parallel role-based agents offer a convenient and intuitive
programming model for structuring a PIM. The executable
PSI generated for a PIM uses parallel role-based agents to
exploit multi-core parallelism while shielding modelers from
the complexities of coordination and synchronization.

Parallelism among collaborating role-based agents implies
the need for coordination. Communication among agents is
asynchronous and may be subject to arbitrary delay, which
implies that the order in which signals are received by agents
may be nondeterministic. If an agent is required to process
a set of asynchronous signals in a deterministic order, such
determinism must be specified within the behavior of the
agent. Similarly, if a set of agents is required to process a set
of signals in a deterministic order, behavior protocols that
ensure the desired determinism must be specified. When
such protocols are specified for individual agent behaviors,

1879

the protocols result in cross-cutting concerns that become
entangled within agent behaviors.

The ARC programming model is a novel but evolution-
ary synthesis of established software technologies, including
role-based modeling and split objects. The ARC model has
several distinguishing features.

• Entities are composed of role-based agents, exposing
inter-entity and intra-entity parallelism and enabling
collaboration-based designs.

• The coordination required by collaboration-based de-
signs is separated from other computation and enacted
via coordination agents upon role-based agents.

• The PSI generated from a PIM maps the model-level
parallelism to the hardware platform, exploiting the
available processor-level parallelism.

This section introduces entities composed of agents and
organized on the basis of a synthesis of role-oriented mod-
eling and split objects. When the roles played by an entity
are largely independent, the roles may effectively execute in
parallel, subject only to data dependencies within the entity.
This simple observation is fundamental to the design of the
ARC programming model.

3.1 Entities and Roles
The use of multi-core processors increases the importance

of maximizing the parallelism within a software system, but
the need to increase parallelism within a PIM must be bal-
anced with an intuitive and convenient programming model.
The ARC programming model is synthesized from two es-
tablished models that are based on the notion of software
viewpoints: role-oriented modeling and split objects. In
role-oriented modeling [4], the features of an object are clas-
sified as either intrinsic or extrinsic. The intrinsic features
of an object are allocated directly to the object, while the
extrinsic features are allocated to the various roles played
by the object in order to collaborate with other objects in
an application. The following role properties are commonly
accepted.

• Abstractivity: Role inheritance can exist.

• Aggregation: A role can be composed of other roles.

• Dependency: A role cannot exist without an object.

• Dynamicity: A role can be assumed/dropped dynam-
ically.

• Identity: An object and its roles constitute a single
entity with one identity.

• Multiplicity: An object can play several roles simulta-
neously, including multiple instances of the same role.

• Visibility: Object access can be restricted to one role.

In the split object model [2], a split object is a collection of
parts that share a common identity. A split object denotes a
single entity, and each part of a split object denotes a view-
point of the entity. A natural synthesis of role-oriented mod-
eling and the split object model results when the viewpoints
of an entity are equated with roles, effectively partitioning
an entity based on the roles it plays.

SJ

P J E J2E J1

Joe

Figure 1: Person Entity with Employee and Student
Roles in the ARC Model

The synthesis of role-oriented modeling and split objects
is realized in the ARC model by structuring computation in
terms of entities composed of base agents and role agents.
A role agent is dependent on its parent agent within an en-
tity. The parent of a role agent is either a base agent, or
in the case of role aggregation, another role agent. A base
agent may be created by an arbitrary agent, and no depen-
dent parent relationship is implied. An entity is composed
of one base agent that represents the intrinsic part of the
entity and zero or more role agents that represent the ex-
trinsic parts of the entity. Each part of the entity has a
dedicated conceptual thread of control. Thus, the intrinsic
and extrinsic parts of the entity may all execute in parallel,
subject only to the data dependencies within the entity. An
entity is a semantic concept and not a syntactic construct.

An example of an entity in the ARC model is illustrated in
Fig. 1, where base agents are denoted by squares, role agents
are denoted by circles, and solid arrows indicate parent re-
lationships among base agents and role agents. The entity
Joe has four agent parts. The intrinsic part of Joe defines
features that are invariant across roles, e.g. the name of a
person, and is implemented by an instance of the Person

base agent (PJ). The example assumes that Joe is a student
who also works two jobs. Thus, an instance of the Student

role agent (SJ) and two instances of the Employee role agent
(EJ1,EJ2) implement the extrinsic parts of Joe. Role agents
define features that are specific to a role or viewpoint of an
entity, e.g. the phone number of a person. The role property
of dynamicity is apparent in the ability to dynamically cre-
ate or delete role agents that implement extrinsic parts of an
entity. The role property of multiplicity is apparent in the
simultaneous existence of multiple roles for Joe, including
two Employee role agent parts of Joe.

3.2 Coordination in the ARC Model
The entities within an application do not exist in isolation.

Application features require collaborations among entities.
A collaboration is a collection of roles played by participat-
ing entities that cooperate to realize an application feature.
In the ARC model, an entity participates in collaborations
through its role agents. The parallelism among role agents
within a collaboration implies the need for coordination if
the role agents are to cooperate effectively. Coordination
in the ARC model is enacted by coordinator agents and

1880

is based on open and dynamic sets of role agents. Both
coordinator agents and role agents may behave as coordi-
nation agents and react to events that occur within other
observed agents. To enhance simplicity and locality, a role
agent observes only its parent agent, and a coordinator agent
observes only the current elements of its coordinated set(s)
of role agents.

A coordinator agent is the point of contact for an in-
stance of a feature collaboration and also enacts coordi-
nation in reaction to events observed in coordinated role
agents. The HSM that specifies the behavior of a coordina-
tor agent therefore handles signals from clients of a feature
collaboration as well as signals from coordinated role agents
collaborating within the feature. The signals sent to a coor-
dinator from coordinated role agents typically signal when a
coordinated role agent enters or exits a specified state. The
coordination agents in the ARC model enhance the modular-
ity of features. A new application feature typically requires
new role agents, new operations for the respective parent
agents to instantiate the new role agents, and a new co-
ordinator agent to coordinate the role-based collaboration
within the feature. The existing role agents of entities often
remain oblivious to additional role agents.

4. AN eUML-ARC EXAMPLE
We illustrate the eUML-ARC model by solving a version

of the dining philosophers problem. Each philosopher alter-
nates between thinking and dining. While thinking, each
philosopher contributes to solving the NAS Embarrassingly
Parallel (EP) benchmark [12]. The EP benchmark is typical
of Monte-Carlo simulation applications in scientific comput-
ing and provides a concrete representation of a workload
that is easily partitioned among ARC parallel agents.

4.1 The Dining Philosophers in eUML-ARC
The eUML-ARC solution to the dining philosophers builds

on the example entity illustrated in Fig. 1. In addition to
the Employee and Student roles, each Person also plays the
Philosopher role in a collaboration of dining philosophers.
A DP coordinator agent coordinates the Philosopher role
agents by behaving as a simple barrier to separate successive
phases of the EP benchmark solution. In even phases of the
solution, philosophers assigned an even index number are in
the thinking state and contribute to the EP benchmark so-
lution, while philosophers assigned an odd index number are
in the dining state. In odd phases of the solution, the states
are reversed. Adjacent philosophers are always in different
states and can therefore atomically acquire necessary table-
ware (fork, chopstick) without the possibility of deadlock.
Before considering the required coordination, we summarize
the behavior of Philosopher agent specified in Fig. 2.

• In the start state, the philosopher transitions to the
thinking state or the dining state, based on whether
its index number is even or odd, respectively.

• On input of the run signal in the thinking state, the
philosopher executes a step of the benchmark via the
EP procedure and then transitions to the dining state.

• On input of the run signal in the dining state, the
philosopher executes the eat procedure and then re-
turns to the thinking state.

agent { r o l e } Phi losopher
{

agent (index : Integer , s t ep s : I n t eg e r) {
t h i s . index := index ; t h i s . s t ep s := s t ep s ;

}
index : In t eg e r ; s t ep s : I n t eg e r ;
(S)−> (index mod 2) == 0 ? th ink ing : d in ing ;
s t a t e th ink ing {

event run (E)−> din ing
{ EP(index , run . step , s t ep s) ; }
e x i t { coord inato r . end (index) ; }

}
s t a t e d in ing {

event run (E)−> th ink ing { eat () ; }
e x i t { coord inato r . end (index) ; }

} }

agent { coord inato r } DP
{

agent (p : Phi losopher [∗] , s t ep s : I n t eg e r) {
t h i s . ph i l o s ophe r s := p ; t h i s . s t ep s := s t ep s ;

}
step , s t ep s : I n t eg e r ; await : I n t eg e r ;
ph i l o s ophe r s : Phi losopher [∗] ;
send (step : In t eg e r) : void {

f o r (ph i l o sopher : Phi losopher in ph i l o s ophe r s)
ph i l o sopher . run (step) ;

await := ph i l o s ophe r s . s i z e () ;
}
(S)−> ba r r i e r { send (step := 1) ; }
s t a t e b a r r i e r {

input end {
i f ((await −= 1) > 0) ; e l s e
i f ((s t ep s −= 1) > 0) send (step += 1) ; e l s e
stop ;

} } }

s i g n a l run (step : In t eg e r) ;
s i g n a l end (index : In t eg e r) ;

Figure 2: The Dining Philosophers Problem

The coordination enacted in Fig. 2 by the DP coordinator
is triggered by signals sent from the Philosopher role agent.
Coordination in the ARC model is treated as an orthogonal
concern, and coordination logic is typically implemented in
the entry and exit actions for states, since state transitions
are fundamental coordination events. The following coordi-
nation logic is specified in Fig. 2.

• When a Philosopher exits the thinking state, the end
signal is sent to its DP coordinator.

• When a Philosopher exits the dining state, the end

signal is sent to its DP coordinator.

The EP benchmark can be partitioned into multiple com-
putational steps of similar granularity, and the DP coordi-
nator is parameterized by the number of steps to use when
solving the benchmark. Despite the roughly equal work-
loads shared by the philosophers in each step, there is no
guarantee that individual philosophers will finish a step and
advance to the next step in a synchronized fashion with-
out explicit coordination. The barrier implemented by the
DP coordinator ensures that each step is synchronized. The
DP coordinator initiates a step by sending the run signal to
each philosopher, and the DP coordinator then waits for the
end signal from each philosopher before initiating the next
step. The barrier-based coordination ensures that adjacent
philosophers are always in different states and eliminates the
explicit locking typically used to achieve mutual exclusion
in the dining philosophers problem.

1881

Execution Time (seconds) and Parallel Efficiency (%)
Input Size NAS serial phil=2,cores=1 phil=4,cores=2 phil=8,cores=4 phil=16,cores=8

228 22.75s 22.75s 11.50s 5.75s 3.00s

228 - 100.00% 98.91% 98.91% 94.79%

230 90.00s 90.00s 45.75s 22.75s 11.75s

230 - 100.00% 98.36% 98.90% 95.74%

232 360.00s 360.00s 181.00s 93.00s 46.50s

232 - 100.00% 99.45% 96.77% 96.77%

Figure 3: Performance of the eUML-ARC Dining Philosopher PSI on an Intel Xeon X5570

4.2 Performance Evaluation
The table in Fig. 3 summarizes the performance achieved

when comparing the eUML-ARC PSI of the dining philoso-
phers EP benchmark to the NAS serial version of the EP
benchmark implemented in C. The target platform was the
Intel Xeon model X5570, a two-processor machine with four
cores per processor, providing eight total hardware threads,
each running at 2.93 GHz.

The EP benchmark is called“Embarrassingly Parallel”be-
cause it is compute-bound, and ideal implementations of the
EP benchmark demonstrate linear speedup and 100% par-
allel efficiency as the benchmark is partitioned among addi-
tional cores. The parallel efficiency measures how well the
PSI utilizes the multi-core parallelism, including the over-
head of communication and coordination. Efficiency is de-
fined by the formula E = T1/(Tt ∗ t), where T1 is the execu-
tion time of the NAS serial version, and Tt is the execution
time of the eUML-ARC parallel version using t threads and
(t∗2) philosophers. The PSI matches the number of applica-
tion threads to the available hardware threads. The concep-
tual threads dedicated to parallel agents are mapped onto
the application threads by the PSI. An agent is scheduled in
an available application thread when a signal is dispatched
to the agent, and the agent is run to completion on the input
signal in the assigned thread.

The performance achieved by the eUML-ARC PSI of the
dining philosophers EP benchmark demonstrates that only
modest overhead is inherent with communicating hierarchi-
cal state machines and role-based coordination. The parallel
efficiency of the eUML-ARC model with an arbitrary appli-
cation obviously depends upon how effectively exploitable
parallelism can be exposed by the role-based ARC model
and the effective use of role-based coordination.

5. CONCLUSION
The use of multi-core processors is reshaping the develop-

ment of software applications. The eUML-ARC model aligns
with the principles of executable UML and enables abstract
platform-independent parallelism. Aligning the Actor model
and executable UML in eUML-ARC provides a concurrency
model that exploits inter-agent parallelism while ensuring
that agent behaviors retain the familiarity and simplicity of
sequential programming. The eUML-ARC model uses a syn-
thesis of role-oriented modeling and the split object model
to structure computation in terms of entities. An entity
is composed of a base intrinsic agent and multiple extrinsic
role agents, all with dedicated conceptual threads of control.
Entities interact through their role agents in the context of
feature-oriented collaborations with dedicated coordinator
agents that enact coordination upon the role agents.

The initial experience gained by specifying a small num-
ber of benchmark applications in the eUML-ARC model
has been positive. We plan to specify and measure addi-
tional benchmark software systems. The effective utilization
of representative multi-core architectures can then be more
fully assessed. We believe the resulting evidence will posi-
tion the eUML-ARC model as an attractive technology for
the development of software systems that execute efficiently
on parallel multi-core hardware.

6. REFERENCES
[1] Agha, G.: Actors: A Model of Concurrent

Computation in Distributed Systems. MIT Press
(1986)

[2] Bardou, D., Dony, C.: Split Objects: A Disciplined
Use of Delegation Within Objects. ACM SIGPLAN
Notices, 31(10) 122–137 (1996)

[3] Harel, D.: Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming,
8(3) 231–274 (1987)

[4] Kristensen, B.B.: Object-Oriented Modeling with
Roles. Proceedings of the 2nd International
Conference on Object-Oriented Information Systems,
57–71 (1996)

[5] Mellor, S.J., Balcer, S.J.: Executable UML: A
Foundation for Model-Driven Architecture. Addison
Wesley (2002)

[6] Mellor, S.J., Kendall, S., Uhl, A., Weise, D.: MDA
Distilled. Addison Wesley (2004)

[7] Milicev, D.: Model-Driven Development with
Executable UML. Wiley (2009)

[8] Patterson, D. et al.: A View of the Parallel
Computing Landscape. Communications of the ACM,
52(10) 56–67 (2009)

[9] Patterson, D.: The Trouble with Multi-Core. IEEE
Spectrum, 47(7) 28–32 (2010)

[10] Raistrick, C., Francis, P., Wright, J., Carter, C.,
Wilkie, I.: Model Driven Architecture with Executable
UML. Cambridge University Press (2004)

[11] Samek, M.: Practical UML Statecharts in C/C++.
Elsevier (2009)

[12] The NAS Parallel Benchmarks.
www.nas.nasa.gov/Resources/Software/npb.html

[13] Object Management Group: UML Superstructure
Specification, Version 2.1.2.
www.omg.org/docs/formal/07-11-02.pdf

[14] Object Management Group: Semantics of a
Foundational Subset for Executable UML Models
(fUML), Version 1.0. www.omg.org/spec/FUML

1882

