
International Scholarly Research Network
ISRN Software Engineering
Volume 2012, Article ID 681985, 12 pages
doi:10.5402/2012/681985

Research Article

On-Line Real-Time Service-Oriented Task Scheduling Using TUF

Shuo Liu,1 Gang Quan,1 and Shangping Ren2

1 Electrical and Computer Engineering Department, Florida International University, Miami, FL 33174, USA
2 Computer Science Department, Illinois Institute of Technology, Chicago, IL 60616, USA

Correspondence should be addressed to Shuo Liu, sliu005@fiu.edu

Received 17 January 2012; Accepted 27 March 2012

Academic Editors: G. Gössler, J. A. Holgado-Terriza, and U. K. Wiil

Copyright © 2012 Shuo Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present our approach to real-time service-oriented scheduling problems with the objective of maximizing the total system
utility. Different from the traditional utility accrual scheduling problems that each task is associated with only a single time utility
function (TUF), we associate two different TUFs—a profit TUF and a penalty TUF—with each task, to model the real-time services
that not only need to reward the early completions but also need to penalize the abortions or deadline misses. The scheduling
heuristics we proposed in this paper judiciously accept, schedule, and abort real-time services when necessary to maximize the
accrued utility. Our extensive experimental results show that our proposed algorithms can significantly outperform the traditional
scheduling algorithms such as the Earliest Deadline First (EDF), the traditional utility accrual (UA) scheduling algorithms, and an
earlier scheduling approach based on a similar model.

1. Introduction

With the proliferation of the Internet the opportunity has
come to provide real-time services over the cloud infras-
tructure [1–3]. From media on-demand service by Netflix to
online gaming by Nintendo, from Amazon’s e-commerce to
Google’s free turn-by-turn direction service over the phone,
all these indicate that we are entering a new era of real-
time computing. These real-time services are usually built
on Internet-based cloud infrastructure, not only because
they need to be highly available, but also because they
generally rely on large data sets that are most conveniently
hosted in large data centers. According to O’Reilly [4], the
entire Internet is becoming not only a platform, but also an
operating system itself, and “the future belongs to services
that respond in real time to information provided either by
their users or by nonhuman sensors” [1].

For real-time services, timeliness is a major criterion
of judging real-time service-quality levels. Due to the high
variability of the Internet, real-time service-oriented applica-
tions are more of soft real-time in nature. Guaranteeing hard
deadlines for real-time services would be neither practical
nor necessary in most scenarios. In this regard, besides pre-
assigned deadlines, some other timing information that is

closely related to quality of service (QoS) become important
metrics when processing real-time service requests.

To improve the real-time service performance, one
approach is to employ the traditional UA approach [5, 6].
In [7], Jensen et al. first proposed to associate each task
with a TUF, which indicates that the completion of a task
will assign the system a certain value of utility, and the
utility value varies with the time when the task is finished.
Specifically, a TUF as shown in Figure 1(a) describes the
value or utility accrued by a system at the time when a
task is completed. Based on this model, there were extensive
research results published on the topic of UA scheduling [8–
12]. For example, in [8], the author proposed an algorithm,
Generic Benefit Scheduling (GBS), based on TUF to schedule
activities that subject to various time and mutual exclusive
resource constraints. Utility density is implemented as
the activity’s priority metric. While Jensen’s definition of
TUF allows the semantics of soft timing constraints to be
more precisely specified, all these variations of UA-aware
scheduling algorithms imply that the aborted tasks neither
increase nor decrease the accrued value or utility of the
system.

We believe that, to further improve the performance of
real-time services over the Internet, it is important to not

2 ISRN Software Engineering

U

0 t

(a)

U

0

t

(b)

U

0 t

G(t)
L(t)

(c)

Figure 1: Time utility functions.

only measure the profit when completing a task in time,
but also account for the penalty when a task is aborted
or discarded. In addition, the time at which a real-time
service is aborted is also important. First, the more service
requests are discarded and the longer a client waits fruitlessly,
the lower the quality of service client receives. As a result,
service providers have to pay higher cost, either in the
form of monetary compensation or losing future service
requests from unsatisfied clients. Second, before a task is
aborted or discarded, it needs to consume system resources,
including network bandwidth, storage space, and processing
power, and thus can directly or indirectly affect the system
performance. This is especially true if we assume real-time
applications may be dissected and migrated across an entire
cloud infrastructure [13, 14]. Therefore, if a real-time task is
deemed to miss its deadline with no positive semantic profit,
a better choice should be one that can detect it and discard it
as soon as possible.

A number of models [15–18] were proposed to account
for the penalty when a real-time service request is discarded
or misses its deadline. For example, Bartal et al. [15] studied
the online scheduling problem when penalties have to be
paid for rejected real-time tasks. Chun and Culler [16] and
Irwin et al. [18] adopted an extended time utility function as
shown in Figure 1(b). According to this model, a decay rate
is associate with each real-time task, reflecting the increasing
risk of completing the task late in the future. Therefore,
when a real-time task is completed late, it earns a negative
utility, indicating a penalty rather than the profit. These
models, however, do not account for different penalties when
aborting a real-time task at different times.

In this paper, we study the real-time service scheduling
problem based on a task model similar to the one proposed
by Yu et al. [19]. Specifically, a task is associated with
two different TUFs, as shown in Figure 1(c), a profit TUF
(G(t)), and a penalty TUF (L(t)). The system takes a profit
(determined by its profit TUF) if the task completes by its
deadline and suffers a penalty (determined by its penalty
TUF) if the task misses its deadline or is dropped before its
completion. The penalty to abort a pending real-time service
request can be the same or different from that of missing the
deadline, which depends on the characteristics of the penalty
TUF. Different from Yu’s model, we use a novel method to
calculate task’s utility and use utility density to describe a
task’s priority. The “critical time” for each task is more strict,
and we add an admission step when there is a new task
arrives since congested ready queue will decrease the system’s
performance. It is a waste of system resources if tasks wait
fruitlessly.

We conduct analysis on how to optimize the accrual
utility when scheduling a set of aperiodic real-time service
requests. We first assume that the service requests are
scheduled in a nonpreemptive manner. Two scheduling
methods are presented. The first scheduling method is
developed based on the concept of “opportunity cost” [20]
from economics that can help evaluate the fulfillment of
a real-time service request. The second method employs
a more sophisticated but robust method to formulate the
potential system profit by developing a speculated execution
order for the ready tasks. We then extend our scheduling
methods to deal with real-time services that may preempt
each other. In addition to carefully choosing the ready
task to run, our scheduling methods judiciously discard
pending requests, abort task executions, cautiously preempt
current running tasks, and therefore can achieve better
performance. Our experimental results also show that the
proposed algorithms can significantly outperform the tradi-
tional scheduling approaches such as the Earliest Deadline
First (EDF), the traditional UA scheduling algorithm, that is,
the Generic Utility Scheduling (GUS) [8], the Risk/Reward
algorithm [18], and a previous scheduling approach based on
a similar model, that is, the Profit Penalty-aware scheduling
(PP-aware scheduling) [19].

The rest of the paper is organized as follows. Section 2
describes the models we used in the paper, formulates the
problem formally, and then presents a motivation example.
Sections 3 and 4 introduce our scheduling approaches in
details. Experiment results are discussed in Section 5, and we
make conclusions in Section 6.

2. Preliminary

In this section, we first introduce the task and architecture
models considered in this paper. We then use an example to
motivate our research.

2.1. Task Model and System Architecture. In this paper, we
consider a single sequence of randomly arrived real-time
tasks Γ = {τ1, τ2, . . . , τn}, with τi defined using the following
parameters:

(i) [Bi,Wi]: the best case execution time Bi and the worst
case execution time Wi of τi;

(ii) Di: the relative deadline of τi;

(iii) fi(T): the probability density function for the execu-
tion time of τi;

(iv) Gi(t): the profit TUF, which represents the profit
accrued when a task is completed at time t. We
assume Gi(t) is a nonincreasing unimodal function
before its deadline, that is, Gi(tp) ≥ Gi(tq) if tp ≤ tq,
and Gi(Di) = 0;

(v) Li(t): the penalty TUF, which represents the penalty
suffered when a task is discarded or aborted at time
t. We assume that Li(t) is a nondecreasing unimodal
function before its deadline, that is, Li(tp) ≤ Li(tq) if
tp ≤ tq, and a task is immediately discarded once it
missed its deadline.

ISRN Software Engineering 3

Note that, even though the deadline of a task can be
implicitly defined using appropriate profit and penalty TUFs,
we opt to list the deadline explicitly as a parameter for ease of
presentation. As shown above, a task is associated with both
a profit function and a penalty function with function values
varying with time. Therefore, while executing a task the
system has a potential to gain profit, it also has a potential to
encounter a penalty at a later time. The system performance
is therefore evaluated by its total utility after penalty is
deducted from profit.

We assume an architecture for the service provider
depicted in Figure 2. Specifically, the service provider con-
tains two computing components, that is, the manager host
and the execution host, that can work concurrently. The
manager host is in charge of accepting, scheduling, and
aborting real-time service requests, and the execution host
fulfills the selected service requests from the manager host.
There may be one or more execution hosts for each service
provider. We limit our research to one single execution host
in this paper.

With the task and architecture model introduced as
above, our problem can be formally formulated as follows.

Problem 1. Given a task set Γ = {τ1, τ2, . . . , τn} as described
above, develop online scheduling methods such that the total
accrued utility is maximized.

2.2. A Motivation Example. The problem defined in Problem
1 is NP hard since a simpler version of this problem, that is,
the total weighted completion time scheduling problem [21],
is shown to be NP hard. To show that the commonly used
scheduling policy such as the EDF or the traditional utility
accrual approach such as the GUS [8] become ineffective
to address this problem, consider the example shown in
Figure 3.

Assume that two real-time service requests arrive at the
same time (t = 0) with their characteristics shown in
Figure 3. We assume that the actual processor time of each
request is evenly distributed between the interval of its best
case and worst case execution time. To make the example
more concrete, we assume that the actual processing times
for these two requests are 50 and 60, respectively.

When EDF is applied, τ1 has a higher priority than τ2

and is executed first. It completes at t = 50 with profit of
G1(50) = 180 − 2 × 50 = 80. Then τ2 starts its execution.
At t = 100, it misses its deadline and will incur more penalty
if its execution continues. Therefore, the execution of τ2 is
discarded at t = 100 with penalty of L2(100) = 2 × 100 =
200. The total utility to process these two requests is therefore
80− 200 = −120.

The GUS algorithm chooses the task with the largest
expected profit density to execute first. Under our task
model, the expected profit of τ1 and τ2, that is, G(τ1) and
G(τ2), can be calculated as

G(τ1) =
∫ 80

20
(180− 2t)× 1

80− 20
dt = 80,

G(τ2) =
∫ 120

20
(400− 3t)× 1

120− 20
dt = 190.

(1)

Host manager
(admission/scheduling/

abort)

Ready queue

Execution
host

Real-time
service
requests

Abort

Figure 2: The architecture for the service provider.

At t = 0, we have no knowledge of the actual execution
time of τ1 and τ2, and a reasonable estimate would be the one
using their expected values, that is, 50 and 70, respectively. As
a result, τ2 is chosen to execute first since its expected profit
density (expected profit divided by expected execution time)
190/70 is higher than that of τ1, that is, 80/50. It completes
at t = 60 with profit of G2(60) = 400 − 3 × 60 = 220.
Then τ1 starts its execution. At t = 80, it misses its deadline
and is aborted to prevent even higher loss. The total utility to
process these two requests is therefore 220− 80 = 140.

An astute reader may immediately point out that, after
τ2 completes at t = 60, it is less likely that τ1 can complete
by its deadline, given that its best case execution time is 20.
Therefore, τ1 should be immediately aborted at t = 60 with
a total utility profit of 220 − 60 = 160. Note that, after τ2

is selected to execute first, its expected execution time would
be 70. Given the expected execution time of τ1 being 50, it is
more likely that τ1 will miss its deadline. Therefore, a better
scheduling decision would discard it at t = 0 with total profit
of 220 in this case, as the third schedule shown in Figure 3.

In our example, we can see that the EDF has the
worst performance since it makes scheduling decisions solely
based on tasks’ deadlines. The traditional utility accrual
scheduling method takes the individual value function into
consideration and therefore can achieve better performance.
The problem, however, is that the traditional utility accrual
scheduling approaches (such as GUS) fail to take the
abortion or discard penalty and the timing for the abortion
or discard penalty into consideration. Clearly, how to select
the appropriate task to run so as to maximize the profit
and how to discard real-time tasks as soon as possible in
overloaded situations in order to control the penalty are vital
for our research problem.

3. Nonpreemptive Approach

In this section, we present our online nonpreemptive
scheduling solutions to address the problem defined in the
previous section. Since the execution of a task may gain
positive profit or suffer penalty and thus degrade the overall
computing performance, judicious decisions must be made
with regard to executing a task, discarding or aborting a task,
and when to discard or abort a task. In what follows, we
present two metrics to measure the expected utility when
executing a real-time task, and, based on which, we develop
two scheduling algorithms.

4 ISRN Software Engineering

EDF

GUS

PPS

20 40 50 60 80 100

D1 D2

D1 D2

D1 D2

τ1 τ2

Deadline miss

Deadline miss

Discard τ1

t

20 40 50 60 80 100

τ1τ2

t

20 40 50 60 80 100

τ2

t

τ1 : (B1, W1) = (20, 80), G1(t)=180-2t, L1(t) = t,D1 = 80

τ2 : (B2, W2) = (20, 120), G2(t)=400-3t, L2(t) = 2t,D2 = 100

Figure 3: Three different schedules for two real-time tasks τ1 and τ2 arriving at the same time t = 0.

3.1. The Opportunity Cost-Based Utility Metric. Our first
utility metric is built upon the concept of opportunity cost
[20] in economics. In economics, the opportunity cost refers
to the value associated with the next best available choice that
one has to give up after making a choice. When scheduling a
set of real-time tasks at t = T , let expected utility of running
τi alone be Ui(T) and its opportunity cost be OCi(T). Then
we can conveniently formulate the expected utility Ũ(τi,T)
to run τi at t = T as

Ũ(τi,T) = Ui(T)−OCi(T). (2)

The problem becomes how to calculate Ui(T) and OCi(T).
Since the task execution time is not known a prior, we

do not know if executing the task will lead to positive profit
or loss. Given its probabilistic distribution, we can determine
the expected profit and loss statistically. Given a task τi with
arrival time of ri, let its predicted starting time be T . Then
the expected profit (Gi(T)) to execute τi can be represented
as

Gi(T) =
∫∞

0
Gi(t + (T − ri)) fi(t | t + T < D)dt

=
∫ Di

Bi

Gi(t + (T − ri)) fi(t)dt.

(3)

Similarly, the expected loss (Li(T)) to execute τi can be
represented as

Li(T) = Li(D)P(t + T > D)

= Li(D)
∫Wi

Di−(T−ri)
fi(t)dt.

(4)

Therefore, the expected utility Ui(T) can be represented as

Ui(T) = Gi(T)− Li(T). (5)

When Ui(T) > 0, it means that the probability to obtain pos-
itive profit is no smaller than that to incur a loss if we choose
to execute τi at t = T . Since Gi(T) is a monotonic decreasing
function of T , and Li(T) is a monotonic increasing function
of T , Ui(T) must be a monotonic decreasing function of T .

Note that even though two tasks may have the same
expected utility, they may have different expected execution
times. We define a parameter ρi to capture the expected utility
density for task τi as follows:

ρi(T) = Ui(T)
Ci

, (6)

whereCi is the expected execution time of task τi. There exists
a t0 such that

ρi(t0) = 0. (7)

The time t = t0 is called the critical point. Apparently, when
t > t0, it is more likely that it will incur a loss rather than a
profit if we choose to execute τi. We can further relax (7) by
imposing a threshold (δ), that is,

ρi(t0) ≥ δ. (8)

We call δ as the utility density threshold.
We next introduce how to formulate the opportunity cost

when choosing to run task τi at t = T . The original concept
of “opportunity cost” is the value for the next best available

ISRN Software Engineering 5

1: Input: Let {τ1, τ2, . . . , τk} be the accepted tasks in the
ready queue, and let Ci be the expected execution time of
τi. Let current time be t and let τ0 be the task currently
being executed, expected execution time of τ0 is C0. Let
the expected utility density threshold be δ.

2:
3: if A new task, that is, τp arrives then
4: Accept τp if ρp(C0) > δ;
5: Reject τp if ρp(C0) ≤ δ;
6: Remove τj in the ready queue end if ρj(C0) ≤ δ;
7: end if
8:
9: Ifτ0 is completed then
10: Choose τi with the largest system utility density, that is,

ρ̃i(t) = maxkρ̃k(t).
11: Remove τj in the ready queue if ρj(Ci) < δ;
12: end if
13:
14: If t = the critical time of τ0 then
15: Abort τ0 immediately;
16: Choose τi with the largest system utility density, that is,

ρ̃i(t) = maxkρ̃k(t).
17: Remove τj in the ready queue if ρj(Ci) < δ;
18: end if

Algorithm 1: The scheduling algorithm based on opportunity cost.

choice. It is hard to identify the “next best choice” since the
exact reason we need the opportunity cost is to set up the
preference order when choosing tasks to run. In our metric,
the opportunity cost is calculated as the decay of expected
utilities by other tasks. Specifically, let the expected utility
of τj at t = T be U j . Then if we choose τi to execute at
t = T and after its completion, the expected utility of τj is
reduced to U j(T + Ci), where Ci is the expected execution
time of τi. Provided that we can remove the task timely
when its expected utility is less than zero, we thus define the
opportunity cost to run τi at t = T , that is, OCi(T) as

OCi(T) = 1
n− 1

n∑
j=1, j /= i

max
((

U j −U j

(
T + Ci

))
, 0
)
. (9)

With both Ui(T) and OCi(T) formulated, we are now
ready to introduce our scheduling algorithm. Our nonpre-
emptive scheduling algorithm works at scheduling points
that include the arrival of a new task, the completion of the
current task, and the critical point of the current task. The
detailed algorithm is described in Algorithm 1.

When a new job arrives, its expected utility density is
calculated based on (2), (5), and (9). If its expected utility
density is larger than the pre-set threshold, it is accepted
and is rejected otherwise. When the current running task
completes, the task in the ready queue with the highest
expected system utility density is chosen to be executed.
When the time reaches the critical point of the current
running task, it implies that it will mostly likely incur utility
density less than the threshold and is thus worthless of
continuous execution. In that case, the task is immediately
discarded, and a new task will be chosen to execute. At every
scheduling point, the expected utility density of the tasks
in the ready queue is checked. Since the expected utility

density decreases monotonically with time, the task with
expected utility density less than the threshold is aborted.
The complexity of Algorithm 1 comes from the calculation
of the expected system utility values for the task set, with the
complexity of O(n2), where n is the number of tasks in the
ready queue.

3.2. The Speculation-Based Utility Metric. From (3), (4), and
(5), we can clearly see that the expected utility of running a
task depends heavily on variable T , that is, the time when the
task can start. If we can know the execution order and thus
the expected starting time for tasks in the ready queue, we
will be able to quantify the expected utility density of each
task more accurately. In this section, we develop our second
utility metric based on a speculated execution order of the
tasks in the ready queue.

The general idea to generate the speculated execution
order is as follows. We first calculate the expected utility
density for each task in the ready queue based on the
expected finishing time of the current running task. Then
the task with the largest one is assumed to be the first task
that will be executed after the current task is finished. Based
on this assumption, we then calculate the expected utility
densities for the rest of the tasks in the ready queue and
select the next task. This process continues until all tasks
in the ready queue are put in the order. While completed,
we essentially generate a speculated execution order for the
tasks in the ready queue and, at the same time, calculate
the corresponding expected utility density for each task. The
detailed algorithm is described in Algorithm 2.

The scheduling algorithm based on our speculated utility
metric is very similar to Algorithm 1 and is thus omitted. The
only difference is that the speculation-expected utility, rather
than the opportunity cost-based utility, for each task in the

6 ISRN Software Engineering

1: Input: Let Γ = {τ1, τ2, . . . , τk} be the accepted tasks in the
ready queue, and let ri, Ci represent the arrival time and
expected execution time of τi. Let the current time be t

2: Output: The new list Γ′ = {τ′1, τ′2, . . . , τ′k} with the speculated
execution order and their corresponding expected
utility density ρ̂′j for τ′j , 1 ≤ j ≤ k.

3: If A task τ0 is being executed then
4: T = r0 + C0;
5: else
6: T = t;
7: end if
8: While Γ is not empty do
9: For Each task i in Γ do
10: Calculate ρi(T) based on (3), (4), (5), and

(6);
11: end for
12: Select τj with the highest ρj(T);
13: Add τj to the end of Γ′;
14 : ρ̂ j = ρj(T);
15: T = T + Cj ;
16: Remove τj from Γ;
17: end while

Algorithm 2: Generating the speculated execution order and the expected utility for task in the ready queue.

ready queue is calculated at each scheduling point, including
the arrival of a new task, the completion of the current task,
and the critical point of the current task.

The complexity of the scheduling algorithm mainly
comes from Algorithm 2. It is not difficult to see that the
complexity of Algorithm 2 is O(n2) with n the number of
tasks in the ready queue.

4. Preemptive Approaches

In the previous section, we introduce two methods to
quantify the potential system utility when scheduling a set of
real-time requests nonpreemptively. Since a preemptive real-
time scheduling technique tends to be more responsive for a
higher priority request and can achieve higher schedulability
and throughput than its nonpreemptive counterpart, we are
interested in studying how to schedule a real-time task set
preemptively to maximize the total accrued system utility.

When employing the preemptive scheduling method to
schedule real-time tasks with the goal of maximizing the
accrued utility, a critical issue is to determine when the
preemption should occur. An intuitive approach is to define
the priority of a task based on its expected utility density (6).
Nevertheless, such an unconstrained preemptive scheduling
may or may not improve the system performance, in terms of
accrued system utility, when compared to a nonpreemptive
one.

Consider the two examples in Figure 4. Figure 4(a)
shows two tasks scheduled both preemptively (based on the
expected utility density) and nonpreemptively. The param-
eters for both tasks are listed in the figure. In preemptive
method, task τ1 arrives and starts its execution at arrival
time t = 0. At time t = 1 task τ2 arrives. Note that, at
t = 1, we have ρ1(t) = 1.3 and ρ2(t) = 1.6. Therefore, τ2

comes with a higher expected utility density and preempts

τ1. Task τ1 continues its execution after task τ2 completes.
The total utility in this method is 12. In the corresponding
nonpreemptive method, task τ2 misses its deadline, and the
total utility in this method is 3. This example shows that,
by processing the higher “priority” job first, the preemption
helps increase the total utility of the system.

Now let us consider the example in Figure 4(b). For the
two tasks in Figure 4(b), at time t = 1, we have ρ1(t) = 1.6
and ρ2(t) = 2.3. Therefore, τ2 has a higher priority than
τ1. When these two tasks are scheduled in the preemptive
manner, task τ1 misses its deadline, and the total utility is
3. Both two tasks can meet their deadlines when they are
scheduled in the nonpreemptive manner with a total utility
of 12.

This example illustrates that unconstrained preemption
does not always help improve the accrued utility. Note that
since the profit and penalty TUFs of each task vary with
time, its “priority” also varies with time. In this case, all tasks
in the ready queue need to be checked for priority at every
time instance. Hence, a perfect preemptive scheduling would
be impractical due to its prohibit computational cost, even
if it is theoretically possible. In addition, a large number of
unconstrained preemptions disrupts task executions, makes
them less likely to complete before their deadlines, and leaves
alone the large overhead coming with the preemptions. Our
empirical studies also showed that unconstrained preemptive
scheduling can potentially degrade the performance than the
corresponding nonpreemptive scheduling. To this end, we
want to limit the scenarios of when the preemption can occur
to improve the performance of the preemptive scheduling.

To constrain the preemptions, we first limit the time
instances that at when preemptions can occur. Instead of
letting a higher priority task always preempts a lower priority
task, we allow that such a preemption can only happen when
a new task comes or at a regular checking point, which we call

ISRN Software Engineering 7

Arrival Exec Best Worst G L D

Task 1

Task 2

0 3 2 7 6

1 2 1 5 4

u u

Pro: 10–5 = 5 Pro: 10–3 = 7

Pro: 10–3 = 7

1 2 3 4 5
Preemptive

1 2 3 4 5
Nonpreemptive

Pen: 4–0 = 4

tt

10–t

10–t t–0

t–1

(a) Preemptive scheduling is better than the nonpreemptive scheduling

u u

Arrival Exec Best Worst G L D

Task 1

Task 2

0 3 2 5 4

1 2 1 5 610–t

10–t t–0

t–1

Pen: 4–0 = 4

Pro: 10–3 = 7

Pro: 10–3 = 7

Pro: 10–5 = 5

1 2 3 4 5

Preemptive

1 2 3 4 5
tt

Nonpreemptive

(b) Nonpreemptive scheduling is better than the preemptive scheduling

Figure 4: Preemptive versus nonpreemptive scheduling two real-time requests to maximize the accrued system utility.

preemption checking point. Let the last preemption occurs at
time t = T0. A task can be preempted at t = T only if new
tasks arrive at t = T or

(T − T0) mod Lint = 0, (10)

where Lint is the length of the preemption checking point
interval.

At a preemption checking point, the higher priority task
does not necessarily always preempt the one with lower
priority if the potential gain to execute the high priority
task is not significantly higher than the gain achieved by
continuously executing the current running task. We define
a parameter called preemption threshold for this purpose. Let
the current running task τ0’s conditional expected accrued
utility density be ρ̂0(τ0, t) at time t, and preempting task τp’s
expected accrued utility density be ρp. Task τp preempts τ0

only when the following equation is satisfied:

ρp
(
τp
)
− ρ̂0(τ0, t) > ζ , (11)

where ζ is the preemption threshold.
To further constrain preemptions, we do not allow the

current task be preempted if it can complete by its deadline
even it requires its worst case execution time. Preempting
such tasks can delay the completion of these tasks, and

potentially turn the profit into penalty if these tasks miss
their deadlines. This constraint is illustrated by (12).

Sτ0 + WEτ0 ≤ Dτ0 , (12)

where Sτ0 is the starting time of current running task
τ0. WEτ0 means the worst case execution time of τ0. Dτ0

represents τ0’s deadline.
We summarize our preemption rules and present the

preemptive scheduling algorithm in Algorithm 3.
From Algorithm 3, when a preemption checking point is

reached or when a new task arrives, scheduler first compares
the preempting task’s expected utility density ρp(Cp) with the
current running task’s conditional expected utility density
ρ̂0(τ0, t). If the preempting task’s expected utility density
exceeds the current running task’s conditional expected
utility density by a preemption threshold, then the scheduler
further checks if the current running task can complete its
execution in its worst case or not. If the current running
task can be completed even in its worst case, no preemption
is allowed in order to protect the current running task,
since this current running task will absolutely contribute
positive utility to the system. Otherwise, the preemption may
postpone the current running task and result in a penalty
because of missing its deadline.

8 ISRN Software Engineering

1: input: Let τ0 be the task currently being executed, and
τp be the task wants to preempt τ0, current time be t,
ρ̂0(τ0, t) be the conditional expected utility density of τ0

at time t, ρp(Cp) be the expected utility density of τp,
Cp and C0 are the expected execution time of τp and τ0,

respectively;
2:
3:When a new task arrives or it is the preemption checking

point
4: If ρp(Cp)− ρ̂0(τ0, t) > ζ then
5: Check what is τ0’s worst case finish time;
6: If Sτ0 + WEτ0 ≤ Dτ0 then
7: Preemption not allowed;
8: else
9: Preemption allowed;
10: end if
11: end if

Algorithm 3: Preemption checking.

5. Experiments

In this section, we use experiments to investigate the
performance of our proposed algorithms. The following six
representative scheduling approaches were implemented and
compared:

(i) EDF: the execution order of tasks are determined
based on the EDF scheduling policy;

(ii) GUS [8]: the execution order of tasks is determined
by the expected utility density, or the accrued utility
per unit time;

(iii) PP: this is a previous approach developed based on
a metric called Risk Factor [19]. It adopts similar
system models as those used in this paper;

(iv) RR: the risk/reward approach described in [18]. This
is a utility accrual approach that allows the utility
value to be negative (e.g., similar to Figure 1(b));

(v) PPOC: this is the scheduling approach (i.e.,
Algorithm 1) built upon the utility metric that is
developed based on the opportunity cost;

(vi) PPS: this is the scheduling approach built upon
the speculated utility-based metric as discussed in
Section 3.2.

5.1. Experiment Setup. The test cases in our experiments
were randomly generated. Specifically, each task τ =
([B,W], f (T),G(t),L(t),D) was randomly generated as
below.

(i) B, W , and D were randomly generated such that they
are uniformly distributed within interval of [1, 10],
[30, 50], and [40, 50], respectively.

(ii) The execution time of a task is assumed to be evenly
distributed between interval of [B,W], that is, f (t) =
1/(W − B).

(iii) G and L were assumed to be linear functions, that is,
G(t) = ag(−t + D) in the range of [0,D] and L(t) =
alt. The gradient for G(t) and L(t), that is, ag and al

were randomly picked from the interval of [4, 10] and
[1, 5], respectively.

(iv) Task release times follow the Poisson distribution
with μ = 1.

(v) Preemption check interval length Lint is set to be 1.

(vi) Preemption threshold ζ is set to be 0.

(vii) The utility density threshold δ is set to 0.

We conducted several different groups of experiments to
study and compare the performance of different approaches
under different conditions. The results are reported as
follows.

5.2. Overall Performance Comparison. We first constructed
5 groups of experiments to study the overall performance
of our proposed nonpreemptive scheduling algorithms. Each
group has 1000 task sets, each of which consists of 20 tasks.
The six different nonpreemptive scheduling algorithms were
applied to the same task sets. The overall utility, the total
profit, and the total penalty by each scheduling approach
were collected and plotted in Figures 5(a), 5(b), and 5(c),
respectively. For ease of presentation, the experimental
results are normalized to that by PPS.

Figure 5(a) clearly shows that both PPOC and PPS can
significantly outperform the other scheduling approaches. It
is not surprising that, from Figure 5(c), we can see that the
penalty-conscious approaches, that is, PP, PPOC, and PPS,
are more effective to control the penalty than the other three,
that is, EDF, GUS, and RR. PPOC and PPS are particular
effective in penalty control. It is interesting to note from
Figures 5(b) and 5(c) that, while the profits obtained by
PPOC and PPS are comparable or even inferior to the other
approaches, the penalties are dramatically decreased. This is
because tasks that would potentially lead to high penalty are
declined or discarded at early stages of their execution. As a
result, the overall utilities are significantly higher than other
approaches. As shown in Figure 5(a), with more elaborate
scheduling algorithms to formulate the expected utility more
accurately, and thus to make more appropriate decisions in

ISRN Software Engineering 9

1 2 3 4 5

0

2

Test cases

To
ta

l u
ti

lit
y

−10

−8

−6

−4

−2

EDF−U
GUS−U
PP−U

RR−U

PPOC−U

PPS−U

(a) Total utility

1 2 3 4 5
0

0.5

1

1.5

2

Test cases

To
ta

l p
ro

fi
t

EDF−G
GUS−G
PP−G

RR−G

PPOC−G

PPS−G

(b) Total profit

1 2 3 4 5
0

5

10

15

20

25

30

35

40

Test cases

To
ta

l p
en

al
ty

EDF−P
GUS−P
PP−P

RR−P

PPOC−P

PPS−P

(c) Total penalty

Figure 5: The comparison of total utility, profit, and penalty by different nonpreemptive scheduling approaches.

task acceptation, abortion, and discard, PPOC improve upon
PP by more than 70%, and PPS improve upon PP by more
than 120% on average.

When comparing PPOC nonpreemptive and PPS non-
preemptive, we can see from Figure 5(a) that PPS is slightly
better than PPOC. We can tell that the speculation-based
utility metric predominant the opportunity cost metric in
the control of penalty. The speculation order plays the major
role in predicting the high risk of penalty.

5.3. Arrival Burst Impacts. We next studied the performance
of our nonpreemptive scheduling methods under different
burst conditions. In this experiment, we set the number of

tasks to 20 and varied the expected number of occurrences
within a unit interval, μ, from 1 to 5. By changing μ, we
essentially changed the interval length between task arrivals.
Figure 6 shows the results of the 1000 task sets’ total utility
with different values of μ achieved by the nonpreemptive
scheduling algorithms.

When μ increases from 1 to 5, the number of task that
comes within the same length of interval decreases, so the
ready queue becomes less crowded and the overall workload
reduces. The reduction in workload also helps lower down
the deadline miss rate. More tasks can contribute positive
profits instead of negative penalties to the system. Therefore,
the total accrued utility is improved. From Figure 6, we can

10 ISRN Software Engineering

1 2 3 4 5

0

0.5

1

To
ta

l u
ti

lit
y

μ

×106

−0.5

−1

−1.5

−2

−2.5

EDF−U
GUS−U
PP−U

RR−U

PPOC−U

PPS−U

Figure 6: The total utility with different μ from nonpreemptive
scheduling algorithms.

see that all the methods have a better performance as μ
increases, and PPS and PPOC significantly outperform the
other approaches.

5.4. Utility Density Threshold Effect. We further studied the
impacts of the utility density threshold δ on the scheduling
performance. As indicated in Section 3, the threshold δ
plays an important role in task admission, abortion, and
execution. The larger the threshold, the smaller the number
of tasks can be accepted and executed, and the smaller the
penalty the system will suffer. To study this impact, we
conducted another set of experiments. We generated task sets
as before but changed the threshold from −30 to 30, with
an interval of 5. The total utilities were collected and shown
in Figure 7. It shows the effects on the 1000 task sets’ total
utilities at various threshold values.

It is interesting to see that the highest utility does
not always occur at the point when the threshold equals
zero. With the help from the figure, we can tell that the
highest utility seldom occurs at the point with the lowest
or the highest threshold value. The lower the threshold, the
more tasks can be accepted to the system and get executed.
This helps to improve the value of potential total profit.
However, having more tasks accepted into a ready queue may
potentially increase the potential penalty cost as many jobs
can not meet their deadlines. On the contrary, using a higher
threshold helps control the potential penalty but may limit
the potential total profit that can be obtained. As a result,
the total utility is a tradeoff between the two as shown in
Figure 7. From Figure 7 we can see the significant impact
that the different threshold values may have on the overall
performance. How to choose an appropriate threshold value
for a specific task set to strike the balance between the profit
and penalty and hence achieve the optimal accrued utility is
an interesting problem and needs further study.

−8

−6

−4

−2

0

2

4

−30−25−20−15−10 −5 0 5 10 15 20 25 30

PPOC, μ =1
PPS, μ =1

To
ta

l u
ti

lit
y

×105

Threshold, μ = 1

Figure 7: The total utility varies with the threshold.

0 5 10 15 20

0

0.01

0.02

0.03

0.04

Interval length

−0.01

U
ti

lit
y

×106

Figure 8: Preemption checking interval effect with λ = 1, task
number = 20 each group, and ζ = 0.

5.5. Effects of Preemption-Checking Interval Length Lint and
Preemption Threshold ζ . In order to design a proper pre-
emptive approach, we studied the preemption effects that
come from variables Lint and ζ . We want to avoid aggressive
preemptions. In Algorithm 3, when there is a high-priority
task that wants to preempt the current running task, our
scheduler first tries to protect the current running task
and guarantee the current running task to finish execution
without being preempted. The first constraint we added on
preemptions is the preemption checking interval. In Figure 8,
the result shows the effect of Lint. Even though there are
bumps in the figure, it demonstrates a major trend that
the smaller the preemption checking interval, the higher the
system utility.

A preemption threshold ζ is another preemption con-
straint. Its effect is reflected by Figure 9. An optimal preemp-
tion threshold for a special task set can be hard to find. As
shown in this figure, similar to the utility density threshold

ISRN Software Engineering 11

0 5 10 15 20

0

0.02

0.04

0.06

Preemption threshold index

−0.04

−0.02

U
ti

lit
y

×106

Figure 9: Preemption threshold effect with λ = 1, task number =
20, and Lint = 1.

(δ) effect, the optimal value is seldom achieved at the two
extremes. For this particular data set we tested, the best
preemption threshold value ζ is around 2.

High preemption number does not mean better per-
formance. Besides overheads generated by preemptions,
potential penalties caused by preemptions may also be large.
A set of carefully designed preemption rules can significantly
improve the preemption performance. Results are shown in
the next subsection.

5.6. Preemption versus Nonpreemption. Finally we compare
our nonpreemptive and preemptive scheduling approaches.
Figure 10 shows comparisons in details between nonpreemp-
tive and preemptive scheduling approaches with the same
task sets. It illustrates that PPS has the highest system utility,
followed by the preemptive approach, then PPOC obtains
the lowest system utility among these three approaches.
Even though from Figure 10(b) we can tell that preemptive
approach achieves the highest profit among them, it does
not have a good control on penalty as PPS does. This results
in a lower system utility in the preemptive approach than
that in PPS. Nevertheless, Figure 10(b) illustrates the value
of constrained preemptions for increasing system-accrued
utility, since our preemptive scheduler always selects high-
priority tasks to run at proper time.

Figure 11 highlights the importance of preemption con-
straints. Some improper preemption instances postpone the
running task’s natural execution, in which a task may meets
its deadline constraint without being preempted. In addition,
it is hard to predict the future condition of the postponed
task. Preemptions may help maximize the accrued system
utility since the scheduler always runs high-priority tasks
first, whereas whether to allow preemptions happen needs
prudential measures. The observation from Figure 11 is that
by applying constraints on preemptions, we successfully
improve the performance of the preemptive scheduling
approach.

1 2 3 4 5

1.5

Experiment sets

To
ta

l u
ti

lit
y

0

0.5

1

−0.5

−1

−1.5

ppsU
ppocU
preU

(a) Comparison of total utility

1 2 3 4 5
0.8

0.9

1

1.1

Experiment sets

To
ta

l p
ro

fi
t

ppsG
ppocG
preG

(b) Comparison of total profit

1 2 3 4 5
0

2

4

6

8

Experiment sets

To
ta

l p
en

al
ty

ppsP
ppocP
preP

(c) Comparison of total penalty

Figure 10: Comparison between PPS nonpreemptive and preemp-
tive scheduling under the burstiness effect.

12 ISRN Software Engineering

1 2 3 4 5

0

1

2

Experiment sets

To
ta

l u
ti

lit
y

ucpreU

preU

−1

−2

×105

Figure 11: Comparison between constrained preemption approach
and unconstrained preemption approach.

6. Conclusions

The popularity of Internet has grown enormously, which
has presented a great opportunity for providing real-time
services over Internet. Considering the tremendously large
scale of the Internet infrastructure, it is necessary that
not only the profit but also the cost of real-time task
executions should be taken into consideration during the
resource management process. Our experimental results
clearly show that the traditional utility accrued approaches
become ineffective.

In this paper, we first present two novel nonpreemp-
tive utility accrued scheduling approaches upon a metric
developed according to the opportunity cost concept and a
speculation-based metric for expected utility, respectively.
Then, a constrained preemptive approach is proposed. Our
scheduling algorithms carefully choose highly profitable
tasks to execute and aggressively remove tasks that potentially
lead to large penalty. Our extensive experimental results
clearly show that our proposed algorithms can significantly
outperform the traditional EDF approach, the traditional
utility accrued approaches, and an earlier heuristic approach
based on a similar profit and penalty aware task model.

Acknowledgment

This work is supported in part by NSF under projects CNS-
0969013, CNS-0917021, CNS-1018108, CNS-1018731, and
CNS-0746643.

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “Above the clouds: a
berkeley view of cloud computing,” UC Berkeley, 2009.

[2] E. Knorr and G. Gruman, “State of the internet operating
system,” 2010, http://radar.oreilly.com/.

[3] A. Weiss, “Computing in the clouds,” NetWorker, vol. 11, no.
4, pp. 16–25, 2007.

[4] T. O’Reilly, “What cloud computing really means,” O’Reilly
Radar, 2010, http://www.infoworld.com/.

[5] R. K. Clark, Scheduling dependent real-time activities, Ph.D.
dissertation, Carnegie Mellon University, 1990.

[6] C. D. Locke, Best-effort decision making for real-time schedul-
ing, Ph.D. dissertation, Carnegie Mellon University, 1986.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven
scheduling model for real-time systems,” in Proceedings of the
IEEE Real-Time Systems Symposium, 1985.

[8] P. Li, Utility accrual real-time scheduling: models and algo-
rithms, Ph.D. dissertation, Virginia Polytechnic Institute and
State University, 2004.

[9] P. Li, H. Wu, B. Ravindran, and E. D. Jensen, “A utility
accrual scheduling algorithm for real-time activities with
mutual exclusion resource constraints,” IEEE Transactions on
Computers, vol. 55, no. 4, pp. 454–469, 2006.

[10] H. Wu, B. Ravindran, and E. D. Jensen, “Energy-efficient,
utility accrual real-time scheduling under the unimodal
arbitrary arrival model,” in Proceedings of the ACM Design,
Automation and Test in Europe (DATE ’05), pp. 474–479,
March 2005.

[11] H. Wu, Energy-efficient utility accrual real-time scheduling,
Ph.D. dissertation, Virginia Polytechnic Institute and State
University, 2005.

[12] H. Wu, U. Balli, B. Ravindran, and E. D. Jensen, “Utility
accrual real-time scheduling under variable cost functions,”
in Proceedings of the 11th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications,
pp. 213–219, August 2005.

[13] F. Casati and M. Shan, “Definition, execution, analysis and
optimization of composite e-service,” IEEE Data Engineering,
vol. 24, no. 1, pp. 29–34, 2001.

[14] H. Kuno, “Surveying the e-services technical landscape,” in
Proceedings of the 2nd International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems,
2000.

[15] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. S. Gall,
and L. Stougie, “Multiprocessor scheduling with rejection,”
in Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’96), pp. 95–103, 1996.

[16] B. N. Chun and D. E. Culler, “User-centric performance anal-
ysis of market-based cluster batch schedulers,” in Proceedings
of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, p. 30, 2002.

[17] F. I. Popovici and J. Wilkes, “Profitable services in an uncertain
world,” in Proceedings of the ACM/IEEE Supercomputing
Conference (SC ’05), p. 36, November 2005.

[18] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk
and reward in a market-based task service,” in Proceedings of
the 13th IEEE International Symposium on High Performance
Distributed Computing, pp. 160–169, June 2004.

[19] Y. Yu, S. Ren, N. Chen, and X. Wang, “Profit and penalty aware
(pp-aware) scheduling for tasks with variable task execution
time,” in Proceedings of the ACM Symposium on Applied
Computing (SAC ’10), 2010.

[20] Z. Bodie, R. Merton, and D. Cleeton, Financial Economics,
Prentice Hall, New York, NY, USA, 2008.

[21] I. D. Baev, W. M. Meleis, and A. Eichenberger, “Algorithms
for total weighted completion time scheduling,” in Proceedings
of the 10th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’99), pp. S852–S853, January 1999.

