
A

Maintaining Real-Time Application Timing Similarity For
Defect-Tolerant NoC-based Many-Core Systems

Zheng Li, Illinois Institute of Technology
Frank Lockom, Illinois Institute of Technology
Shangping Ren, Illinois Institute of Technology

Many-core Network-on-Chip (NoC) processors are emerging in broad application areas, including those with
timing requirements, such as real-time and multimedia applications. Typically, these processors employ
core-level backup to improve yield. However, when defective cores are replaced by backup ones, the NoC
topology changes. Consequently, a fine-tuned application based on timing parameters given by one topol-
ogy may not meet the expected timing behavior under the new one. We first develop a metric to measure
timing similarity of an application on different NoC topologies and then propose mixed binary quadratic
programming and greedy algorithms to reconfigure a defect-tolerant many-core NoC.

Categories and Subject Descriptors: C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems

General Terms: Network on Chip, Many-core, Virtualization

Additional Key Words and Phrases: Timing similarity, Multimedia application, Guaranteed service, Mixed
binary quadratic programming

ACM Reference Format:
Zheng Li, Frank Lockom, and Shangping Ren, 2013. Maintaining Real-Time Application Timing Similarity
For Defect-Tolerant NoC-based Many-Core Systems. ACM Trans. Embedd. Comput. Syst. V, N, Article A
(January YYYY), 20 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
As technology advances, many-core architectures are becoming the mainstream for a
large spectrum of applications, including real-time applications and multimedia appli-
cations. As there are many cores on-chip, such architectures typically employ Network-
on-Chip (NoC) as a scalable communication backbone among processing cores [Dally
and Towles 2001; Benini and De Micheli 2002]. However, many challenges are yet to be
tackled for the design of NoC-based many-core processors, manufacturing defects and
transistor wear-outs are among the top list. According to Sperling’s report [Sperling
2007], for a cell processor, without considering defect tolerance during the architecture
design phase, even under the best case, the yield can be as low as only 10% to 20%.

As there are many light weighted cores on-chip, and each core occupies only a small
area of the chip footprint, core-level backup is often used as an efficient technique to
overcome the NoC yield issue [Zhang et al. 2008]. Cores which become defective due
to the manufacturing process or wear-out can be replaced with a backup core, thus
guaranteeing the demanded computing capability. However, when a defective core is

This work is supported by the NSF CNS 1018731 and NSF Career 0746643.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

replaced with a backup core, it is possible that, the physical topology, i.e., the intercon-
nect relationship among cores is changed.

Different physical topologies may have different failure maps with different perfor-
mance characteristics, it would be a great burden for application developers to consider
the various topologies to deploy and optimize their applications. Topology virtualiza-
tion is proposed to isolate the variation of the underlying physical structure, and pro-
vide application developers with the same virtual topology of a defect-free chip [Zhang
et al. 2009].

Prior research on many-core topology virtualization mainly focused on the general
purpose computing domain and the methods proposed intend to achieve better per-
formance in terms of communication latency and network throughput [Zhang et al.
2008]. However, for a real-time application, rather than performance, the most impor-
tant property is the timing predictability. In order to avoid introducing extra cost in
redesigning, re-implementing, retesting, and re-certifying the system during the re-
configuration, the timing behaviors of the application after reconfiguration should be
similar to the one on a defect-free chip.

For a given application that has already been mapped to a NoC platform, if some
of the cores on which tasks are deployed become defective, with core-level backup,
backup cores are used to replace the defective cores. However, this reconfiguration will
change the physical distance between two communicating tasks, which may impact the
application’s timing behaviors and cause timing variations. Therefore, the question is
how to select backup candidates to minimize the timing variation.

When on a small scale NoC, i.e., both the number of backup cores B and the number
of defective cores F are small, we can traverse all B!/(B−F)! choices for remapping the
defective cores and find the optimal one. However, in a large scale NoC, when there are
hundreds of cores per chip with B and F large enough, the time cost is unaffordable
even if it is computed offline.

In this paper, we will focus on the homogeneous 2-dimensional (2D) mesh many-core
NoC platforms to develop a metric to measure the timing similarity between two dif-
ferent topologies upon which a real-time application is deployed. With respect to this
metric, we will provide two solutions: a mixed binary quadratic programming (MBQP)
approach and a greedy algorithm. The MBQP approach can get the optimal solution
by using commercially available tools to solve the reconfiguration problem. However,
the MBQP approach is time consuming and may only be acceptable for offline recon-
figuration. The greedy algorithm is recommended for online reconfiguration. Although
the optimal solution is not guaranteed, experiment results have shown that the greedy
choice averages among the top 10% of all the possible choices.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
We give our NoC and application model in Section 3. In Section 4, we first provide a
motivating example, continue by developing our timing similarity metric and then use
this metric to formulate the problem we are to solve. Our proposed algorithms and
a discussion of our previous work are then given in Section 5 and are evaluated in
Section 6. Finally we conclude in Section 7.

2. RELATED WORK
As mobile computing becomes pervasive, NoC platforms have been developed to accom-
modate real-time and multimedia applications. Much of the research has been done in
the area of NoC topology explorations. For instance, Lankes et al. [2009] studied a NoC
topology exploration based on a real-world mobile multimedia application by using
an abstract simulation model. They pointed out that the enhanced unidirectional ring
topology has the best performance with latency and chip area taken into consideration.
Ma et al. [2010] conducted system-level exploration of mesh-based NoC architectures

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

for multimedia applications. They established a simulation platform and proposed an
exploration approach to obtain the optimal design for specific applications.

Optimization of multimedia application to NoC platform mapping problems have
also been studied extensively. Haiyun et al. [2007] addressed a mapping algorithm
of irregular mesh NoC for portable multimedia applications to achieve the minimum
communication cost with certain constrains. Chou and Marculescu [2008] analyzed
the impact of network contention on the application mapping for NoC architecture
and then formulate the contention-aware application mapping problem which aims at
minimizing the network contention to an integer linear programming problem. Derin
et al. [2011] focused on minimizing the communication traffic in the system and the
total execution time of the application to do the application to NoC platform mapping.
They also formulated this problem to an integer linear programming problem.

Virtualization provides a unified hardware interface for applications. The topol-
ogy virtualization problem for general purpose computing is discussed thoroughly in
[Zhang et al. 2008, 2009, 2010]. Performance degradation of virtual topologies when
compared to the topology initially designed, i.e., the reference topology, is evaluated by
using two metrics, i.e., distance factor (DF) and congestion factor (CF). The DF is the
average hop count between a core and all of its virtual neighbors, which determines the
zero-load communication latency of a virtual topology. CF is used to evaluate the chan-
nel load distribution among links under certain routing algorithm (e.g., XY-routing).
As the more balanced the channel load, the closer the throughput of the network is to
the reference one, a reconfigured topology that balances traffic more evenly across all
NoC links is preferred. The topology virtualization problem is then formalized based
on these two performance metrics. A heuristic approach called Row Rippling Column
Stealing (RRCS) is proposed in [Zhang et al. 2008]. The essence of RRCS is to main-
tain the physical regularity of reconfigured virtual topologies in both row and column
units, and hence to maximize performance. Unlike our approach, RRCS is application
agnostic. We evaluate its performance in section 6.

Rather than using performance as a single objective, many-core topology virtualiza-
tion for applications with specific timing requirements, such as multimedia applica-
tion containing real-time data, also needs to consider maintaining timing similarities
among different topologies. Many notions of timing behavior similarities have been
proposed in various literature. For instance, Henzinger et al. [2005] defined quanti-
tative notions of timed similarity and bisimilarity on timed systems. They also gave
algorithms to compute the distance between two timed systems modeled as timed au-
tomaton. Recent research shows that the timing behavior of a system can be charac-
terized by a feasible region defined by the system’s timing constraint set [Yu et al.
2010].

In addition, the prevalence of multimedia applications also advanced the evolution
of the physical architecture of NoC. In a conventional NoC platform, packages need
to compete for routing and transmitting on link, therefore, if congestion appears, the
transmission time delay is unpredictable. But multimedia applications always contain
real-time data, which require guaranteed performance to meet the required levels of
service. Goossens et al. [2005] developed the Æthereal NoC by pipelined time-division-
multiplexed circuit switching, which can provide guaranteed service by time slot reser-
vation. However, this architecture has the scalability issue, because of the global syn-
chronicity requirement, that is, all the routers in the network must occupy the same
fixed-duration slot. Based on globally asynchronous locally synchronous concept, Bjer-
regaard and Sparso [2005] developed the MANGO clockless NoC, which can provide
guaranteed service by virtual channel reservation.

As guaranteed service based NoC is the trend for multimedia and real-time appli-
cations, in this paper, we will consider this type of architecture to analyze the timing

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

similarity problem during the topology reconfiguration. The objective is to use backup
cores provided on the chip to replace defective cores and at the same time to maximize
the timing behaviors resemblance of the application on the newly configured one to
that on the initially designed one.

3. SYSTEM MODEL
Before formulating our problem we define our system model, we also define the nota-
tions which are to be used throughout this article.

3.1. Network On Chip (NoC) Many-Core Processor Model
Our many-core NoC model is based on a 2D mesh topology with homogeneous cores
under XY routing. In a 2D mesh topology, cores are arranged in rows and columns and
are connected to (at most four) adjacent cores via bidirectional links. The chip provides
a virtual topology of cores to applications which is supported by an underlying physical
topology with an additional set of backup cores.

As our focus is on real-time applications, we assume the NoC provides guaranteed
service (latency and throughput) for the applications. Guaranteed service is provided
by reserving a portion of the bandwidth available on a link so long as the total reserved
bandwidth does not exceed 1. This can be seen as a generalization of time division
multiplexed circuit switching in Æthereal [Goossens et al. 2005] or virtual channel
reservation in MANGO [Bjerregaard and Sparso 2005]

The NoC is represented by the undirected graph (C,L) where each ci ∈ C represents
a physical core in the NoC and each edge lk = (ci, cj) ∈ L is a direct communication link
between two adjacent physical cores. The NoC takes the form of a 2D mesh topology
as in Fig. 1(a). Additionally we have:

— C̃ denotes the set of virtual cores which are provided to applications by the NoC,
where |C̃| < |C| and c(i) ∈ C̃ is an individual virtual core.

— B is the set of backup cores provided by the chip where B ⊂ C, |B| = |C| − |C̃| and
bi ∈ B denotes an individual backup core.

— A virtual topology mapping 1 Mk
C̃C

: C̃ → C is an injective function mapping from
each virtual core to a unique physical core. We represent Mk

C̃C
as a logical matrix

where Mk
C̃C

(i, j) = 1 indicates c(i) ∈ C̃ is mapped to cj ∈ C. The defect-free or reference
mapping is the mapping when no cores are defective and is given by Mref

C̃C
: C̃ → C\B.

Changing the virtual topology mapping is called reconfiguration. We use Mnew
C̃C

to
denote the mapping after reconfiguration and Mk

C̃C
to denote a generic mapping.

— Defective physical cores are denoted by the set F ⊂ C. The set F̃ ⊆ C̃, denotes the
corresponding affected virtual cores given by the reference mapping, these are the
cores which must be remapped.

— Given the set of affected virtual cores F̃ , our problem is to construct a new virtual
topology mapping Mnew

C̃C
which remaps the affected virtual cores to backup cores.

More precisely, we would like to find the value of each binary variable xi,j in

1Throughout this paper, we use the notation M i
AB which denotes a relation M i : A → B represented as a

logic matrix between two previously defined sets A,B. The variable i is only used to differentiate relations
of the same form. Occasionally it is also used to represent a relation of the form M i : (A,B) → Z or some
other number set.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Mnew
C̃C

(i, j) =


Mref

C̃C
(i, j), c(i) 6∈ F̃

xi,j , c(i) ∈ F̃ , cj ∈ B
0, otherwise

(1)

This indicates that we only change the mapping of defective cores and do not consider
a full remapping. It is possible that a full remapping may provide a better solution
however we avoid a full remapping for two reasons. First, during online reconfigura-
tion, there will be a migration cost associated with each remapping. Only considering
movement of defective cores will keep this to a minimum. Second, we would like to
avoid other variations not accounted for in our model such as different thermal or
power consumption properties which may vary over the NoC. Thus we aim to find
a solution which utilizes the original mapping as a starting point and makes only
necessary changes.

3.2. Mapped application task graph
Applications in this article are represented by task graphs similar to those used
in [Dick et al. 1998; Liu 2000; Lei and Kumar 2003; Chou and Marculescu 2008] which
are mapped to a virtual topology. The DAG (V,E) represents an application where each
vi ∈ V is a task and each edge ei = (vi, vj) ∈ E represents a data dependency of vj on
vi. In addition, we have

— Each task vi is mapped to a virtual core in C̃ given by MV C̃ : V → C̃. Note that this
mapping is fixed and does not change during reconfiguration. MV C̃ is represented as
a logical matrix.

— Each task has an execution time in cycles given by exec(vi), exec will be used as a
column vector in matrix operations.

— Each edge has a data volume in flits given by vol(ei), vol will also be used as a column
vector.

— Each edge has an injection rate in cycles/flit given by rate(ei). The reciprocal of injec-
tion rate is bandwidth given by bandwidth(ei). Both rate and bandwidth are also used
as column vectors.

Given an NoC and application task graph the most basic property which determines
timing similarity is the hop count between communicating tasks. The hop count of a
communication edge ek = (vi, vj) is the number of links over which data will travel
from vi to vj under XY routing. We use the logical matrix Mk

EL : E → L to represent
the links which are used by an edge for a given virtual topology mapping, Mk

C̃C
. Thus

we can define the hop count hopsk : E → N for each edge as

hopsk = Mk
EL × 1|L| (2)

where N is the set of natural numbers and 1|L| is the column vector of 1’s of size |L|.
Calculation of Mk

EL is left to section 5.1.
We assume that MV C̃ does not overload any link in the defect free topology un-

der XY routing. A link is overloaded if the total bandwidth allocated across it is
greater than 1. It is important to note that when reconfiguring the virtual topology,
we must ensure that no link becomes overloaded. This constraint can be represented
as (Mk

EL)T ×bandwidth ≤ 1|L|, where (Mk
EL)T is the transpose of Mk

EL and bandwidth is
the column vector of the fraction of a link’s bandwidth required by each communication
edge. This implies we are not concerned with when a link may be in use. If a commu-
nication edge utilizes a link it must reserve its required portion of bandwidth at all

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Fig. 1. Example application and NoC

times. This assumption is consistent with the mechanisms by which guaranteed ser-
vice is provided in the NoC architectures previously mentioned [Goossens et al. 2005;
Bjerregaard and Sparso 2005].

The execution of an application task graph is as follows: A task vi begins ex-
ecution when it has received the required data volume from all its parents, i.e.,
{vol(vk)|(vk, vi) ∈ E}. After exec(vi) cycles the task is completed and begins sending
the required data volume at the injection rate required to all of its children. After
a task has finished communication, it will again begin execution after satisfying its
dependencies; or if it has no dependencies, execution will begin immediately.

4. PROBLEM FORMULATION
Before developing our timing similarity metric and formulating our problem, we first
give a brief example to help solidify our models and motivate the problem.

4.1. Motivating Example
Suppose we have the application shown in Fig. 1(c). It is mapped to the 3 × 3 virtual
topology given in Fig. 1(b) and is supported by the underlying physical topology pro-
viding 3 backup cores located on the right most column as pictured in Fig. 1(a). Now
suppose that the physical core c6 becomes defective, we must create a new virtual
topology mapping, Mnew

C̃C
, by changing the mapping of c(6) on the defect-free topology

to either b1, b2 or b3.
Reconfiguration may change the timing behavior of the application by changing the

hop count of a communication edge. As task v2 is mapped to c(6), the hop count of all
edges in the application incident with v2 must be examined. The resulting hop counts
are listed in Table I.

Additionally we must ensure that the remapping does not cause any of the links to be
overloaded. For example if Mnew

C̃C
(c(6)) = b1, links l2 and l3 will be overloaded, because

they would be on the paths corresponding to e1, e2 and e3 and the total bandwidth
exceeds the links’ capacity(1/2 + 1/4 + 1/2 > 1). Therefore b1 can not be the candidate.

In order to minimize the impact to the existing system and save the extra cost for
redesign, re-implementing, retesting and re-certifying the system, we should keep the
application’s timing behaviors after reconfiguration as similar to the original one as

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Table I Hop counts for
different reconfigurations of c(6)

e1 e2 e3
Mref

C̃C
2 3 1

Mnew
C̃C

(c(6)) = b1 2 5 3
Mnew

C̃C
(c(6)) = b2 3 4 2

Mnew
C̃C

(c(6)) = b3 4 3 3

possible. If our metric for timing similarity was average hop count of each edge then
our choice would be Mnew

C̃C
(c(6)) = b2.

Simply looking at the hopcount may not always yield the best result however. Con-
sidering our example, if the hop count of e1 changes, the communication time will
change and the starting time of v2 will also be changed. This change will then propa-
gate to the starting time of v3 and v4, in addition to the changes introduced by e2 and
e3, respectively. Based on the analysis above, we will formulate our timing similarity
metric in the next section.

4.2. Timing Similarity Metric
As we assume the many-core systems are homogeneous, the tasks execution times will
not vary due to reconfiguration. Hence, on-chip communication is the dominant factor
that differentiates various timing behaviors. We define communication time below.

Definition 4.1. Communication Time:
Given a virtual topology mapping, Mk

C̃C
, and an application task graph, (V,E), the

communication time in cycles for each edge is given by the column vector commk : E →
N:

commk = hopsk + diag(rate)× diag(vol)× 1|E| (3)

where N is the set of natural numbers, hopsk is given by Eq. (2) and diag(vector) is the
diagonal matrix formed using vector.

2

According to the definition of an application task graph, a task can only start when
the required data from all its precedences has arrived. Thus we can define the starting
time of a task recursively given the starting time, execution time, and communication
time of all its parents. Note that the following definitions are not circular as we assume
the mapped application task graph is a DAG.

Definition 4.2. Starting Time:
Given a virtual topology mapping Mk

C̃C
, the starting time in cycles of a task is defined

by startk

startk(vi) = max{Mk
V V (i, :)} (4)

where Mk
V V is a |V |×|V |matrix such that Mk

V V (i, j) = n indicates that vj is a precedent
of vi in the application task graph and that vi has received all of the data from vj at
time n. max{Mk

V V (i, :)} indicates the largest element in row i.

Mk
V V (i, j) =

{
startk(vj) + exec(vj) + commk((vj , vi)) if (vj , vi) ∈ E

0 otherwise
(5)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

2

For our model we conclude that if after reconfiguration, the starting time of all tasks
remains the same then the timing properties are the same.

In statistics, Euclidean Distance is often used to measure the distance between the
sample spaces of random variables, which is defined as:

DQ1,Q2
(2) =

√√√√ n∑
i=1

|fQ1,i
− fQ2,i

|2 (6)

where fQj,i is the sampled value of variable i in sample space Qj and n is the number
of variables.

In most cases, distance and similarity measures are interchangeable in the sense
that a small distance means high similarity. Based on this sense, the Euclidean
Distance has been widely used to measure similarity between two images [Hastie
et al. 2008]. Similarly, we map our time similarity problem to the distance problem in
the following way: the starting time of each task is treated as a random variable, and
all tasks’ starting times on the defect-free virtual topology mapping Mref

C̃C
and the one

after reconfiguration Mnew
C̃C

can be treated as different sample spaces, so the timing
similarity can be defined as:

Dnew =

√∑
vi∈V

(startref (vi)− startnew(vi))2 (7)

4.3. Problem Formulation
With the metric of timing similarity defined as Eq. (7), we can now formulate our
problem as:

Objective: Minimizing the timing distance.
Given an application task graph (V,E), the NoC (C,L), which the application is
mapped to and a set of defective cores F ⊂ C \ B, |F | ≤ |B|, assign a value to each
binary variable xi,j in Eq. (1) such that:

minimize Dnew (8)

Subject to:
Constraint 1: The bandwidth across each link must not exceed its capacity.

(Mk
EL)T × bandwidth ≤ 1|L| (9)

Constraint 2: Each virtual core is mapped to only one physical core.

Mnew
C̃C
× 1|C| = 1|C̃| (10)

Constraint 3: At most one virtual core can be mapped to a given physical core.

(Mnew
C̃C

)T × 1|C̃| ≤ 1|C| (11)

As we have mentioned, when the number of backup cores B and the defective cores
F are large enough, enumerating all B!/(B − F)! permutations is not feasible. In the
next section we will give our two proposed algorithms. First we will transform this
optimization problem to a mixed binary quadratic programming problem, which can

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

be solved by commercial tools, such as IBM ILOG CPLEX [IBM 2008]. Second, we give
a greedy solution which may not find the optimal solution but can finish in polynomial
time under certain constrains to be specified.

5. MAINTAINING APPLICATION TIMING SIMILARITY
In this section, we present two approaches to address the problem of maximizing tim-
ing similarity defined in section 4.3. We also discuss our previous work on this topic.

5.1. Mixed Binary Quadratic Programming (MBQP) Approach
5.1.1 General MBQP

Mixed binary quadratic programming problem is a special type of mixed integer
quadratic programming problem. It contains a quadratic function subject to linear
constraints on its variables, and some of the variables are constrained to binary values.
The mathematical definition can be found in [Axehill 2005]. Although the MBQP is
a well known NP-hard problem [Wolsey 1998], some commercial tools, such as IBM
ILOG CPLEX, are available to solve it efficiently [IBM 2008]. Unfortunately, in our
formulated problem, the objective function in formula (8) is not quadratic and the
constraint in formula (9) is not represented in linear format. Next, we discuss how to
transform the maximizing timing similarity problem to the MBQP problem.

5.1.2 linear calculation of Mnew
EL and Mnew

V V

In order to obtain a quadratic objective function2 and represent the constraint (9)
in linear format, which is required by MBQP, the following issues must be resolved in
order to complete the formulation:

— represent Mnew
EL and Mnew

V V in linear format to get starting time in formula (4) and
the bandwidth constraint in formula (9).

— transform the max function in formula (4) to a set of linear constraints.

We first introduce the concept of paths in the NoC. For any two physical cores (ci, cj)
in the NoC, there is only one set of links on which data will travel between them under
deterministic XY routing. We call this set of links a path. As these paths are based
on the physical topology of the NoC, they are statically defined and do not change for
different virtual topology mappings. We call the set of all paths P , where |P | = |C|2.
We define three matrices associated with paths.

— MPL : P → L where MPL(i, j) = 1 indicates lj ∈ L is part of path pi.
— MCPs : C → P where MCPs(i, j) = 1 indicates ci ∈ C is the source of path pj .
— MCPk

: C → P where MCPk
(i, j) = 1 indicates ci ∈ C is the sink of path pj .

In order to define the Mnew
EL and Mnew

V V , the information of application task graph
is also needed. We use the following two matrices to represent the application task
graph, which are independent of different virtual topology mappings.

— MEVs : E → V where MEVs(i, j) = 1 indicates vj ∈ V is the source of edge ei ∈ E.
— MEVk

: E → V where MEVk
(i, j) = 1 indicates vj ∈ V is the sink of edge ei ∈ E.

As defined in section 3.2, Mnew
EL : E → L is to represent the mapping from edges to

links. In order to get this mapping, we must first map edges to paths. Hence, we build
two auxiliary matrices:

— Mnew
EPs

: E → P where Mnew
EPs

(i, j) = 1 indicates the physical core that the source of
edge ei mapped to is the source core of path pj under the new virtual topology.

2When specifying the MBQP problem, we do not apply the square root operation in the object function (7),
as it must be quadratic.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

— Mnew
EPk

: E → P where Mnew
EPk

(i, j) = 1 indicates the physical core that the sink of edge
ei mapped to is the sink core of path pj under the new virtual topology.

Using the introduced matrices above, we can represent Mnew
EPs

and Mnew
EPk

as:

Mnew
EPs

= MEVs ×MV C̃ ×Mnew
C̃C
×MCPs

and

Mnew
EPk

= MEVk
×MV C̃ ×Mnew

C̃C
×MCPk

An edge is mapped to a path if and only if both the source and sink physical cores of
that edge correspond to the path. Thus the edges to paths mapping can be represented
as:

Mnew
EP (i, j) = min(Mnew

EPs
(i, j),Mnew

EPk
(i, j)) (12)

which can be represented by the following set of linear constrains:

Mnew
EP (i, j) ≤Mnew

EPs
(i, j),

Mnew
EP (i, j) ≤Mnew

EPk
(i, j),

Mnew
EP (i, j) ≥Mnew

EPs
(i, j) + Mnew

EPk
(i, j)− 1

Finally, we are in a position to define Mnew
EL : E → L

Mnew
EL = Mnew

EP ×MPL (13)

Now we are ready to re-define Mnew
V V in the linear format. Recall from its previous

definition in Eq. (5) that the ith row in Mnew
V V contains the time at which vi’s parents

have finished sending data to vi, i.e., starting time + execution time + communication
time. With this in mind we have:

Mnew
V V = (MEVk

)T × [MEVs
× (diag(startnew) + diag(exec)) + diag(commnew)× (MEVs

)]
(14)

Lastly, we need to formulate the max function in formula (4), which is in the format
of xmax = max{x1, x2, ..., xn}, to a set of linear constraints. When n = 2, that is, xmax =
max{x1, x2}, Timothy [Burks and Sakallah 1993] represented it by the following linear
functions: 

xmax ≥ x1,

xmax ≥ x2,

xmax − x1 ≤ wg,

xmax − x2 ≤ (1− w)g

(15)

where, w is a binary variable, and g is a sufficiently large positive constant.
When n ≥ 3, we can group them into pairs (if n is not even, let xn itself be a group)

and use Timothy’s method to get the maximum value of each pair, then repeat on
these maximum values iteratively until xmax is obtained. For example, when n = 3, we
can change the format as xmax = max{max{x1, x2}, x3}, and then represent each max
operation using Timothy’s method.

At this point we have addressed the issues outlined at the beginning of this section
and have formulated the timing similarity problem to MBQP problem.

Commercial tools, such as IBM ILOG CPLEX which uses the branch and bound algo-
rithm can considerably speed up the process of solving real-life applications with much
lower average time complexity than the worst case [Thakoor and Gao 2011]. However
MBQP is still NP-hard. Hence, when the number of faulty cores and backup cores are

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

large, the execution time of IBM ILOG CPLEX could still be prohibitively long and
hinders the MBQP based approach from being applicable for online reconfiguration.
Hence a quicker solution is needed and the greedy-based algorithm is developed for
this purpose. Next, we present the greedy algorithm which may not find the optimal
solution, but can provide a good solution in polynomial time.

5.2. Greedy Approach
The MBQP approach is guaranteed to find the optimal solution, if one exists. The gen-
eral idea of the greedy algorithm is to choose one defective core replacement at a time,
making an optimal choice for each individual replacement, hoping to arrive at the
optimal solution for the reconfiguration. Unfortunately, finding the optimal solution
cannot be guaranteed in this manner as the choice of replacements are not indepen-
dent and the order in which the defective cores are replaced has significant impact on
the optimality of the result.

In our application model, tasks may have dependencies. In other words, changes in
the starting time of precedent tasks may propagate to their dependent tasks. When
selecting a replacement for a defective core c(i) which task vi is deployed upon, the
local optimal is to use a backup core that minimizes task vi’s starting time change.
However, when task dependency has to be taken into consideration, minimizing the
impact on the dependent tasks’ starting time change becomes important. Hence, we
choose to order the defective cores in descending order by the number of descendants
of the tasks mapped to the core. This gives higher priority to cores which have the
largest potential to affect other tasks.

As shown in the example in section 4.1, if a reconfiguration causes a link to exceed
its bandwidth, it is not a valid configuration. This presents a problem to the greedy
algorithm because it is possible to unknowingly choose replacements which leave only
invalid options at a later point. In order to avoid this situation, we impose a precondi-
tion on the greedy algorithm, i.e., requiring that the sum of the communication rates
on all edges incident to defective cores does not exceed the available bandwidth of any
link in the NoC. More specifically, given a set of defective cores F , the precondition is
defined by (16):

∑
ej∈F e

1

rate(ej)
≤ 1−max

li∈L

(∑
ek∈E−F e

rate(ek)×Mref
EL (k, i)

)
(16)

where F e is the set of edges in the task graph incident to a vertex which is mapped to
a defective core:

F e = {ei|ei = (vj , vk),Mref

C̃C
(MV C̃(vj)) ∈ F ∨Mref

C̃C
(MV C̃(vk)) ∈ F}

The satisfaction of condition (16) guarantees sufficient bandwidth on a link even when
the communication over all the edges in F e are moved to the link.

It is worth pointing out that the precondition is only a sufficient condition. In other
words, when the precondition is not satisfied, the algorithm may still be able to find
a solution using, for instance, backtracking. However, this will change the time com-
plexity of the algorithm.

As mentioned before, the goal of the greedy algorithm is to quickly find a solution
for on-line reconfiguration. It is not intended to overlap with MBQP. In addition, for a
real-time application, a solution with guaranteed performance is critical. Hence, rather
than using backtracking, we enforce the satisfaction of the precondition (16). The al-
gorithm is given in Algorithm 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

ALGORITHM 1: The Greedy Algorithm
Precondition: Formula (16)

1 sort F descending by the number of descendants ;
2 Mnew

C̃C
←Mref

C̃C
;

3 for i← 1 to |F | do
4 bs←∞ ;
5 bc← 0 ;
6 for j ← 1 to |B| do
7 Mnew

C̃C
(c(i))← bj ;

8 if Dnew < bs then
9 bs← Dnew ;

10 bc← j;
11 end
12 end
13 Mnew

C̃C
(c(i))← bbc ;

14 B ← B − {bbc};
15 end
16 return Mnew

C̃C
;

Defective cores which have not yet been remapped are assumed to be in their initial
location in the reference mapping when calculating their tasks’ starting times (line
2). For each defective core (line 3) the algorithm explores the possible backup cores
as a replacement (lines 6-12), choosing the backup core which keeps timing distance
minimized. Each time a backup core is chosen, it is removed from the list of choices
for the next iteration (line 14). The greedy algorithm produces a new virtual topology
mapping Mnew

C̃C
and set of backup cores B. The new mapping and remaining backup

cores can be used as the reference mapping for future reconfigurations.
The time complexity of the greedy algorithm is (|F | ∗ |B|) × (|V | + |E|) + |F | lg |F |)

where |F | ∗ |B| is the nested loop and |V | + |E| is the time to calculate the timing
similarity Dnew (line 8). The time to sort the defective cores (line 1) is just |F | lg |F | as
the number of descendants is static and can be stored with the task graph. However,
as we pointed out earlier in the subsection that such polynomial time complexity is
based on the assumption that the precondition, i.e., formula (16), holds, which can be
restrictive for some applications. The performance of the greedy algorithm is evaluated
in the next section.

5.3. Comparison with Previous Work
As we have now given our assumptions, problem definition and proposed solutions,
we will briefly discuss our previous work on this topic appearing in [Yue et al. 2011].
There are two main differences in this paper from our previous work. One is the use
of a guaranteed service NoC model. Previously when defining our timing similarity
metric the main issue was quantifying congestion, as this was unpredictable and very
dependent on implementation details of the application and NoC. We developed a met-
ric called Traffic Flow Occupancy which attempted to keep the level of traffic over links
equal before and after reconfiguration. However, as our concern was with real-time ap-
plications it was found that this metric was not well correlated with the actual timing
properties of the application. Adopting the guaranteed service NoC model added an
additional constraint to the problem but ultimately allowed us to accurately predict
communication times and thus adopt the more useful metric of task starting times.
Additionally, in our previous work, we used communication graphs instead of task
graphs. In this context communication graphs are derived from task graphs by remov-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

ing dependency information and only considering the average bandwidth required by
each edge. Removing this simplification was also necessary in order to calculate tasks
starting times.

In our previous work we also proposed a greedy algorithm, the main difference from
the current algorithm being the order in which faulty cores are replaced. In our previ-
ous work we replaced faulty cores in order of decreasing Traffic Flow Occupancy. This
strategy is also compared to our current method in Section 6.2.2.

6. EVALUATION
In this section, we set up multiple experiments for the following purposes:
1) Evaluate the metric given in formula (4) for computing the task’s starting time by
comparing it with the simulated starting time.
2) Investigate the execution time of IBM ILOG CPLEX for solving the formulated
MBQP problem by increasing the number of defective cores, the number of backup
cores and the number of tasks, and then evaluate the impact of the returned solution
by limiting its execution time.
3) Compare the solution found by our proposed greedy algorithm with the optimal
solution, RRCS, an average choice and our previous greedy algorithm, and then rank
the greedy choice among the entire solution space.

In our experiments, we use TGFF [Dick et al. 1998] to generate randomized applica-
tion task graphs and create a random mapping of the tasks to a 2D mesh NoC, which
is simulated by NIRGAM [Jain et al. 2007]. The tasks to cores mapping is random
because we do not assume anything about the original mapping of the application and
only aim to achieve timing similarity.

We run IBM ILOG CPLEX on a Microsoft Windows XP server equipped with a dual-
core E5200 Intel CPU, the clock speed of which is 2.5GHZ, and two gigabytes of mem-
ory to evaluate its execution time.

6.1. Metric Evaluation
In this set of experiments, we show that the metric given in formula (4) is a good model
for predicting the task’s starting time. We run 10 randomly generated applications on
NIRGAM. The applications contain 135 tasks in all and are randomly mapped to a
6×6 mesh NoC. For each task in the applications the starting time is recorded from the
results of NIRGAM and calculated using formula (4), the delta is taken and normalized
to the calculated started time:

normalized∆(vi) =
|sStartref (vi)− startref (vi)|

startref (vi)
(17)

where sStartref (vi) is the simulated starting time of vi on the reference mapping given
by the NIRGAM simulation.

The results of the experiments are shown in Fig. 2. The average value of these nor-
malized starting time differences is 1.24%, and the standard deviation is 0.7%. Based
on these results, we can conclude that our model is sufficiently accurate to predict
tasks’ starting times compared to the NIRGAM simulator, which takes into account
the low level details of the NoC.

6.2. Algorithm Evaluation
6.2.1. MBQP Approach.

Three sets of experiments are designed in this section. The first two are to investigate
how the number of defective cores, the number of backup cores and the number of tasks
impact the running time of IBM ILOG CPLEX to solve the formulated MBQP problem.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Fig. 2. Model accuracy simulation

The third is to evaluate the impact to the solution returned by limiting the running
time of IBM ILOG CPLEX. The combinations of the backup cores and defective cores
are randomly selected.

In the first set, we run an application with 16 tasks on a 6× 6 mesh NoC. We set the
number of backup cores as 8 and increase the number of defective cores from 2 to 8. For
each scenario, we get the average time cost by running 10 cases, each with randomly
selected backup and defective core sets. We then increase the number of backup cores
to 12 and 20 and repeat the experiments. The results are shown in Fig. 3. We can
see that the running time increases more quickly when the number of backup cores
increases. Note the logarithmic scale of the graph.

The second experiment is designed to evaluate the impact of the number of tasks
on the running time. The number of defective and backup cores are fixed at 6 and
12 respectively with a mesh size of 8 × 8. We then generate applications containing
between 8 and 48 tasks. Ten combinations of backup and defective cores are chosen
for each task size and the average running time is graphed in Fig. 4. We can see the
time cost increases from 7 seconds to 21 seconds when the number of tasks grows from
8 to 48. Comparing with Fig. 3, we can see the running time is affected more by the
number of defective cores and the number of backup cores than the number of tasks,
the reason is the first two determine the search space of the solution.

The last test is based on the case with 8 defective cores and 20 backup cores in the
first set of experiments, which costs about 1760 seconds to obtain the optimal solution
with a timing distance of 7. As shown in Fig. 5, by limiting the execution time to 10,
100 and 600 seconds, the solutions returned by IBM ILOG CPLEX have the timing
distance of 29, 22 and 19, respectively.

From these experiments, we have the following observations:
1) The running time of IBM ILOG CPLEX is affected more by the number of defective
cores and the number of backup cores than the number of tasks.
2) By limiting the execution time, IBM ILOG CPLEX can return an approximate solu-
tion, and the longer the execution time, the better the solution.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Fig. 3. Running time impact corresponding to the number of defective cores and number of backup cores

Fig. 4. Running time impact corresponding to the number of tasks

6.2.2. Greedy Approach.
In this section, we evaluate the performance of the proposed greedy algorithm. We
first compare the timing similarity of the solution found by the greedy algorithm with
the optimal one, RRCS [Zhang et al. 2008], our previous greedy algorithm [Yue et al.
2011] and a randomly selected solution. We then examine how the algorithms effect
the starting times of a real application. Finally we explore the whole solution space
and compare the greedy choice among them.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Fig. 5. Impact of the solution by limiting the running time

The experiment is put in the context of mesh sizes to easily relate results back to
the NoC. Each mesh contains an n × n virtual topology with a (n + 1) × n physical
topology. For each mesh size, 15 random applications are generated using TGFF [Dick
et al. 1998] and are randomly mapped to the virtual topology. The size of the task
graph is n× n. For each task graph, we generate 15 random faulty core sets using the
maximum number of redundant cores available, i.e., 6 faulty cores for a 6 × 6 mesh.
We then solve each problem instance using each algorithm and average the resulting
timing similarity across all 225 cases. The random choice can be understood as an
average timing similarity for its respective mesh size.

Fig. 6 gives the results of the first experiment. In general, we see the greedy algo-
rithm is closer to the optimal, on average, than the other algorithms. Looking to the
RRCS algorithm we see that it performs slightly better than the optimal at the 3 × 3
mesh size. This is because RRCS is not constrained to only remapping defective cores
as our other algorithms are. Note that as the mesh size grows, RRCS quickly loses its
advantage as it only considers the location of the faulty cores and is agnostic to the
application.

Looking at our previous greedy algorithm, we see that the solution becomes increas-
ingly poor compared to the current greedy algorithm as the size of the problem in-
creases. This is due to the previous greedy algorithm’s order of replacement. The larger
applications will see increasingly poor performance as increased starting time of prece-
dent tasks propagates to successors.

Now we will take a real application from the Embedded Systems Synthesis bench-
mark (E3S) suite and examine how the starting time of individual task varies. The
E3S also uses task graphs to specify applications, although it is not a real substitute
for real applications, this synthetic benchmark models realistic application data using
real-world applications and systems [Dick 2007]. The application we chosen is task
graph 2 from the Auto Industry suite, which is the largest one in the suite. The ap-
plication contains nine tasks and is mapped to a 4× 4 virtual topology supported by a
5×4 physical topology. We randomly pick 4 defective cores. The timing similarity of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Fig. 6. Comparing greedy choice with other algorithms

solutions given by RRCS, our previous greedy algorithm, our current greedy algorithm
and the optimal solution are 5.0, 2.6, 2.4 and 2.0 respectively. We also give the average
starting time delta by enumerating the entire solution space. The tasks are ordered
along the x-axis by the number of descendants they contain in the graph. The results
are shown in Fig. 7.

For the final experiment we will examine how the greedy algorithm ranks among the
entire solution space. We consider several combinations of mesh, backup and defective
core sizes. We generate 25 problems for each combination. For each problem we sort
the solution space by timing similarity and record the position of the greedy solution
as a percentile rank. The results are given in Table II and include the worst, average
and standard deviation among the 25 problems for each size.

From Table II, we have the following observations:
1) The performance of the greedy algorithm is stable, the average case of the greedy

choices is among the top 10% of all the possible solutions.
2) When the mesh size becomes larger, the average cases and most of the worst

cases get better, the standard deviations also become smaller. This is due to the ex-
ponentially increasing size of the solution space containing a larger number of poor
choices for reconfiguration.

7. CONCLUSION
Virtualization in many-core systems in presence of manufacturing defects and device
wear-outs for real-time and multimedia applications is very complex and depends
heavily on the desired hardware architecture, timing requirements, and the on-chip
backup core distributions. The developed MBQP approach is able to find the opti-
mal candidates to replace defective cores for the reconfiguration, so that the timing
behaviors to replace the mapped application is most similar to the one initially de-
signed. However, the MBQP approach is time consuming, especially when the number
of backup cores and the number of defective cores are large. Hence, this approach is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Fig. 7. Algorithms comparison in term of task’s starting time

Table II Ranks of the greedy choice
mesh
size tasks backup

cores
defective

cores
worst
(%)

average
(%)

standard
deviation (%)

4× 4 11 5
3 45.84 5.74 13.51
4 75.00 8.54 16.20
5 47.67 9.98 14.68

5× 5 20 5
3 56.67 4.60 13.45
4 40.84 4.19 12.41
5 43.20 3.29 12.02

6× 6 30 6
3 30.00 2.08 11.03
4 32.50 2.26 11.44
5 24.65 2.54 11.21

more suitable for offline reconfiguration. In order to guarantee to find a good solution
in short time, a more efficient heuristic algorithm, i.e., greedy algorithm is proposed,
which can be used for the online reconfiguration. The simulation results show that the
average case of the solutions obtained by the greedy approach are among the top 10%
of all the possible ones and improve upon previous methods.

The research presented in the paper is only the first step toward applying virtualiza-
tion technologies to real-time and multimedia applications. We are all aware that the
precondition imposed on the heuristic algorithm may not always be established, our
immediate next step is to relax this condition to cover more scenarios. The developed
MBQP approach is time consuming and may only be acceptable for offline reconfigu-
ration for now, but we plan to use rounding techniques to transform this problem to a
quadratic programming (QP) problem, which can be solved in polynomial time.

We will study how reconfiguration may impact hard real-time applications, and in-
vestigate virtualization techniques that guarantee deadline satisfactions. In addition

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

to the timing issues, real-time and multimedia applications often have other resource
constraints, such as peak temperature and energy consumption constraints, the virtu-
alization problem becomes more challenging when these concerns must be taken into
consideration. This is another area of our future study. Another direction of our future
work is to address these concerns for heterogeneous many-core systems.

REFERENCES

Daniel Axehill. 2005. Applications of Integer Quadratic Programming in Control and
Communication. Ph.D. Dissertation. Department of Electrical Engineering Köping
University.

L. Benini and G. De Micheli. 2002. Networks on chips: a new SoC paradigm. IEEE
Computers 35, 1 (Jan. 2002), 70–78.

T. Bjerregaard and J. Sparso. 2005. A router architecture for connection-oriented ser-
vice guarantees in the MANGO clockless network-on-chip. In Proc. of IEEE/ACM
Design, Automation and Test in Europe Conference (DATE). 1226–1231.

T.M. Burks and K. Sakallah. 1993. Min-max linear programming and the timing anal-
ysis of digital circuits. In Proc. of IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 152–155.

Chen-Ling Chou and R. Marculescu. 2008. Contention-aware application mapping
for Network-on-Chip communication architectures. In Proc. of IEEE International
Conference on Computer Design (ICCD). 164–169.

W. J Dally and B. Towles. 2001. Route packets, not wires: on-chip interconnection
networks. In Proc. of 38th Design Automation Conference (DAC). 684–689.

O. Derin, D. Kabakci, and L. Fiorin. 2011. Online task remapping strategies for fault-
tolerant Network-on-Chip multiprocessors. In Proc. of 5th IEEE/ACM International
Symposium on Networks on Chip (NoCS). 129–136.

R. Dick. 2007. Embedded System Synthesis Benchmarks (E3S). (2007). Available
from http://ziyang.eecs.umich.edu/ dickrp/e3s/.

Robert P. Dick, David L. Rhodes, and Wayne Wolf. 1998. TGFF: task graphs for
free. In Proc. of the 6th international workshop on Hardware/software codesign
(CODES/CASHE). 97–101.

K. Goossens, J. Dielissen, and A. Radulescu. 2005. AEthereal network on chip: con-
cepts, architectures, and implementations. IEEE Design Test of Computers 22, 5
(2005), 414–421.

Gu Haiyun, Li Changwen, and Sun Shu. 2007. Research on mapping algorithm of
irregular mesh NoC for portable multimedia appliances. In IET Conference on Wire-
less, Mobile and Sensor Networks (CCWMSN). 697–700.

T. Hastie, R. Tibshirani, and J.H. Friedman. 2008. The elements of statistical learning:
data mining, inference, and prediction. New York: Springer-Verlag.

Tom Henzinger, Rupak Majumdar, and Vinayak Prabhu. 2005. Quantifying similari-
ties between timed systems.. In Proc. of the 3rd International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS). 226–241.

IBM. 2008. IBM ILOG CPLEX Optimizer. (Nov. 2008). http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/

L. Jain, BM Al-Hashimi, MS Gaur, V. Laxmi, and A. Narayanan. 2007. NIRGAM: a
simulator for NoC interconnect routing and application modeling. In Workshop on
Diagnostic Services in Network-on-Chips, Design, Automation and Test in Europe
Conference (DATE). 16–20.

A. Lankes, A. Herkersdorf, S. Sonntag, and H. Reinig. 2009. NoC topology exploration
for mobile multimedia applications. In Proc. of 16th IEEE International Conference
on Electronics, Circuits, and Systems (ICECS). 707 –710.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Tang Lei and S. Kumar. 2003. A two-step genetic algorithm for mapping task graphs
to a network on chip architecture. In Proc. of IEEE Euromicro Symposium on Digital
System Design. 180 –187.

Jane W. S. W. Liu. 2000. Real-Time Systems (1st ed.). Prentice Hall PTR, Upper Saddle
River, NJ, USA.

Ning Ma, Zhonghai Lu, Zhibo Pang, and Lirong Zheng. 2010. System-level exploration
of mesh-based NoC architectures for multimedia applications. In Proc. of IEEE In-
ternational SOC Conference (SOCC). 99–104.

Ed Sperling. 2007. Turn down the heat...please. (2007). Available from
http://dopu.cs.auc.dk.

Ninad Thakoor and Jean Gao. 2011. Branch-and-Bound for Model Selection and Its
Computational Complexity. IEEE Trans. on Knowledge and Data Engineering 23, 5
(May 2011), 655–668.

L.A. Wolsey. 1998. Integer programming. Wiley-Interscience, NY, USA.
Y. Yu, S. Ren, and O. Frieder. 2010. Feasibility of semiring-based timing constraints.

ACM Trans. on Embedded Computing Systems 9, 4 (Sep. 2010), 33.
Ke Yue, S. Ghalim, Zheng Li, F. Lockom, Shangping Ren, Lei Zhang, and Xiaowei

Li. 2011. A greedy approach to tolerate defect cores for multimedia applications.
In Proc. of 9th IEEE Symposium on Embedded Systems for Real-Time Multimedia
(ESTIMedia). 112–119.

Lei Zhang, Yinhe Han, Qiang Xu, and Xiaowei Li. 2008. Defect Tolerance in Homo-
geneous Manycore Processors Using Core-Level Redundancy with Unified Topology.
In Proc. of IEEE/ACM Design, Automation and Test in Europe Conference (DATE).
891–896.

Lei Zhang, Yinhe Han, Qiang Xu, Xiao wei Li, and Huawei Li. 2009. On Topology
Reconfiguration for Defect-Tolerant NoC-Based Homogeneous Manycore Systems.
IEEE Trans. on Very Large Scale Integration Systems 17, 9 (Sep. 2009), 1173–1186.

Lei Zhang, Yue Yu, Jianbo Dong, Yinhe Han, Shangping Ren, and Xiaowei Li.
2010. Performance-asymmetry-aware topology virtualization for defect-tolerant
NoC-based many-core processors. In Proc. of IEEE/ACM Design, Automation Test
in Europe Conference (DATE). 1566–1571.

Received January 2011; revised July 2012, January 2013; accepted May 2013

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

