
Empirical Study of Energy Minimization Issues for
Mixed-Criticality Systems with Reliability

Constraints
Zheng Li, Xiayu Hua, Chunhui Guo and Shangping Ren

Department of Computer Science
Illinois Institute of Technology

Chicago, Illinois 60616
Email: {zli80, xhua, cguo13, ren}@iit.edu

Abstract—This paper empirically studies the energy mini-
mization problem on a mixed-criticality system with stringent
reliability and deadline constraints. To address this problem,
we first analyze the resource demand of a mixed-criticality task
set with both reliability and deadline constraints. Based on the
analysis, we present our heuristic search based energy minimiza-
tion algorithm (HSEM), which is used to find a task execution
strategy that can not only satisfy task set’s reliability and deadline
constraints, but also minimize system’s total energy consumption.
The performance of our proposed HSEM is compared with
two baselines, i.e., the largest utilization first (LUF) and the
smallest utilization first (SUF) algorithms. The experimental
results indicate that the HSEM algorithm outperforms the SUF
and LUF algorithms with respect to energy saving.

Index Terms—Energy, Mixed-criticality, Reliability, Deadline

I. INTRODUCTION

When designing real-time and embedded systems, to reduce
device cost, and space, weight and power consumption, a
common trend is to integrate tasks of different functionalities
and of different desired levels of safety on the same hardware
platform [1]. The mixed-criticality system design, i.e., tasks
of two or more levels of criticality share the same platform, is
recently considered by automotive and avionic industries [2].
Examples include unmanned aerial vehicles (UAV), which in-
tegrates the HI-criticality functionalities such as flight-control
tasks and LO-criticality tasks such as photo capturing tasks [3]
on the same platform.

Due to limited resources, LO-criticality and HI-criticality
tasks on the same platform may compete for resources and
cause tasks to miss their deadlines. However, HI-criticality
tasks, such as flight-control tasks in UAV systems, are more
crucial for the entire systems. To ensure HI-criticality tasks
meet their deadlines, extra pessimism is taken when estimating
HI-criticality task’s worst case execution time [4].

When all the tasks execute no more than their designed
worst case execution time, the system is considered operating
under LO-mode. However, if some task executes beyond this
limit, the system changes to HI-mode immediately. A resource
efficient system should guarantee that both LO-criticality and

The research is supported in part by NSF CAREER 0746643 and NSF CNS
1018731.

HI-criticality tasks always meet their deadline under LO-mode;
when system changes to HI-mode, HI-criticality tasks are still
guaranteed to meet their deadlines [5]. Extensive research
study has been conducted to design more resource efficient
mixed-criticality systems.

In addition to the schedulability issue, power/energy effi-
ciency and reliability have increasingly become critical issues
in designing real-time and embedded systems. As more and
more transistors are integrated into a single chip, operation
power consumption of the chip has increased exponentially.
Dynamic Voltage and Frequency Scaling (DVFS), which dy-
namically lowering down the supply voltage and working
frequency, is widely used for power management. However,
existing work [6] has shown that the transient fault rate
increases when the supply voltage on an IC chip decreases.
In other words, lowering down system’s supply voltage can
potentially degrade the system’s reliability. Hence, how to
minimize system’s energy consumption without sacrificing the
reliability requirement, is another design challenge.

In this paper, we experimentally study how to schedule
mixed-criticality tasks so that the system’s energy consumption
is minimized, but the following constraints are satisfied:

1) schedulability constraint: both HI-criticality and LO-
criticality tasks are guaranteed meet their deadlines
under LO-mode, and HI-criticality tasks are guaranteed
to meet their deadlines under HI-mode;

2) reliability constraint: both HI-criticality and LO-
criticality tasks are guaranteed to meet their reliability
constraints under LO-mode, and HI-criticality tasks are
guaranteed to meet their reliability constraints under HI-
mode.

The main contributions of the paper can be highlighted as
follows: 1) analyze mixed-criticality task set resource demand
under both reliability and schedulability constraints 2) present
the heuristic search based energy minimization algorithm for
deciding the lowest task execution frequency that satisfies both
deadline and reliability requirements 3) empirically evaluate
and compare our proposed HSEM algorithm with the two
baselines, i.e., LUF and SUF, with respect to energy consump-

tion.
The rest of the paper is organized as follows. We first

discuss related work in Section II. Models and the problem
formulation are presented in Section III. The theoretical anal-
ysis is given in Section IV. In Section V, we present our
proposed HSEM scheduling algorithms. Experimental results
are illustrated in Section VI. Finally we conclude the work in
Section VII.

II. RELATED WORK

The research community has started to study the schedu-
lability issue of mixed-criticality systems in the recent years.
Baruah [4] was the first to apply EDF scheduling theory for
mixed-criticality system and gave the response time analysis.
To determine the EDF schedulability on mixed criticality
systems, the EDF-VD algorithm, which assigns HI-criticality
tasks a reduced deadline to ensure their schedulability under
the worst case scenario, was also proposed by Baruah [7].

Ekberg [5] used the demand-bound function analysis to
determine task set’s schedulability under EDF algorithm. Ek-
berg’s algorithm has a significant improvement over the EDF-
VD, but it has higher time complexity. In order to provide a
guaranteed minimum level of service to LO-criticality tasks
even when system enters in HI-mode execution, Su [8] con-
sidered using elastic task models and proposed a strategy to
increase LO-criticality task periods to reduce their competition
against HI-criticality tasks, but allow LO-criticality tasks to
execute when possible.

Extensive research work has also been published to address
the interplay of reliability and energy consumption problem on
traditional real-time systems, i.e., all the tasks in the system
are at the same criticality level. Zhu et al. [9], [10] proposed
a reliability-aware power management scheme which aims
to minimize energy consumption while maintaining system’s
reliability at the same level as if all tasks were executed
at the highest processor frequency. Zhao et al. [11] later
improved the approach and developed the shared recovery
(SHR) technique, which to further save more energy cost by
reducing the reserved slack time for fault recoveries.

However, not much work has been done in the area of
reducing power consumption for mixed-criticality tasks with
both reliability and deadline constraints. This paper is to
address the above mentioned problem.

III. MODELS AND PROBLEM FORMULATION

A. Models

Processor Model
The processor is DVFS enabled with a finite set of available

frequencies, i.e., F = {f1, ..., fq}. The frequency values in F
are in an descending order with f1 = fmax and fq = fmin.
These frequencies are normalized with respected to fmax, i.e.,
fmax = 1.

Task Model
Similar to the task models in previous works [12] [13],

in a task set Γ, we use a quadruple to define a task: τi =
(Ci, Di, Ti, Li), where

• Ci = {Ci(LO), Ci(HI)} are the task’s worst-case exe-
cution times,

• Di is the task’s relative deadline,
• Ti is the task’s period,
• Li is the criticality of the task.
Furthermore, for a task τi, Ci(LO) and Ci(HI) are the

execution times calibrated under maximum frequency fmax
of the given resource. If τi is a HI-criticality task (i.e. Li =
HI), Ci(LO) ≤ Ci(HI); if it is a LO-criticality task (i.e.
Li = LO), Ci(LO) = Ci(HI).

For a task τi ∈ Γ, its LO-mode and HI-mode utilization
are defined as uL(τi) = Ci(LO)

Ti
and uH(τi) = Ci(HI)

Ti
,

respectively.
Transient Fault Model
Although both permanent and transient faults may occur

during task execution, transient faults are found more frequent
than permanent faults. Hence, in this paper, we focus on
transient faults and assume the same fault arrival rate model
as given in [10]:

λ(f) = λ̂010−d̂f (1)

where λ̂0 = λ010
d

1−fmin , d̂ = d
1−fmin

, and λ0 is the average
fault arrival rate at fmax and d(> 0) is a system-dependent
constant.

Fault Recovery Model
Backward fault recovery [10] is adopted in our system to

recover failed task instances. More specificly, we assume fault
detection is taken at the end of a task instance’s execution.
If any fault is detected, the failed task instance will be re-
executed at the maximum processor’s speed, i.e., fmax, within
the same instance period if time is available for the recovery
execution. The fault detection time cost is counted as part of
task’s worst case execution time.

System Model
The system has two running modes, i.e., LO-mode and HI-

mode. Initially, the system runs at the LO-mode. In this mode,
each task τi can run up to Ci(LO)

fi
time units within each period

if its processing frequency is fi under the LO-mode. If any task
τi executes beyond Ci(LO)

fi
time units in a period, the system

switch to the HI-mode. In the HI-mode, all LO-criticality tasks
are removed from the system and every HI-criticality task τi’s
maximum execution time changes to Ci(HI)

f ′i
if its processing

frequency is f ′i under the HI-mode.
It is worth pointing out that fault recovery time is not

counted as tasks’ execution time. More specifically, when a
task τi executes for ai time to finish but failed, then it take
additional bi time for recovery, if ai + bi ≥ Ci(LO)

fi
but

ai <
Ci(LO)
fi

, the system mode will not change. The mode
change only can be trigger when ai ≥ Ci(LO)

fi
.

Task-Instance-Level Reliability Model
Task-instance-level reliability is defined as the probability of

completing a task instance τij without incurring errors caused
by transient faults [10]. It is denoted as Ri and calculated by:

Ri(fi) = e
−λ(fi)·

Ci
fi (2)

Task-Level Reliability Model

Task-level reliability is defined as the probability of com-
pleting all the instances of τi successfully within a hyperperiod
H of a given task set [14]. it is denoted as Φi. If τi has ki
instances in H and all the instances are executed under fi,
and all these instances are allowed to recover at most ai times
if needed, then Φi can be calculate as:

Φi(fi, ai, ki) = Ri(fi)
k +

ai∑
j=1

(kij)(1−Ri(fi))jRi(fi)ki−j (3)

Energy Model
We adopt the same energy model given in [15]. In par-

ticular, if task τi is executed under frequency fi, its energy
consumption is represented as:

E(fi, Ci) = Pind
Ci
fi

+ CefCif
θ−1
i (4)

Where Pind, Cef , and θ(≥ 2) are system-dependent, but
frequency-independent constants.

Though fault recovery also consumes energy, the probability
of fault occurrence is really small, hence, the expected energy
cost of fault recovery can be ignored. Therefore, for a given
task τi, if it executes under the working frequency fi within
a hyperperiod H , then the total expected energy cost within a
hyperperiod can be calculated as:

EC(fi) =
H

Ti
· E(fi, Ci) (5)

where H is the length of the hyperperiod, fi is the working
frequency assigned to τi.

There is a balanced frequency, i.e., the energy-efficient fre-
quency (fee) — further scaling down the processing frequency
below fee will increase total energy consumption. To simplify
the discussion, we assume fmin ≥ fee.

Based on these models, we formulate the problem the paper
is to investigate below.

B. Problem Formulation

Given a DVFS enabled processor with q different processing
frequencies, i.e. F = {f1, · · · , fq} and a mixed-criticality task
set Γ = {ΓLO,ΓHI}, develop an algorithm that minimizes
system’s energy consumption and at the same time satisfies
the schedulability constraint and reliability constraint.

For a mixed-criticality system, initially, the system operates
under the LO-mode. However, as soon as a task τi runs over
its Ci(LO), the system changes to the HI-mode to guarantee
that all unfinished HI-criticality tasks be completed before
their deadlines. Hence, to minimize energy consumption, a
straightforward strategy is: when system is under the LO-
mode, tasks run at lower frequencies; once the system changes
to the HI-mode, all HI-criticality task execution frequencies
are switched to the fmax so that the deadlines can be met and
LO-criticality tasks are removed from the system. However,
in order to implement this strategy, we have to answer the
following questions:

1) When system operates in the LO-mode, under what
frequency should each task τi ∈ Γ operates so that the
energy consumption can be reduced?

2) How to schedule the task set to meet the scheduliability
constraint?

3) How to guarantee system’s reliability constraint is al-
ways satisfied?

It is worth pointing out that in this paper, we assume
the reliability requirement is set as the task-level reliability
when all the tasks instance executes under fmax without fault
recovery, i.e., Φi(fmax, 0, ki).

Based on the energy model (formula (4)), tasks running
under lower frequencies can reduce system’s energy con-
sumption. However, running tasks under lower speed takes
longer time to complete tasks’ execution and also results in
lower system reliability. To maintaining system’s reliability
at the desired level, failed tasks have to be recovered by re-
execution, which would need additional time. The additional
time cost may cause tasks miss their deadline. Clearly, the
three questions are intertwined with each other and cannot be
solved independently.

IV. THEORETIC ANALYSIS

In this section, we focus on for a given task-frequency
assignment, how to schedule the tasks to meet both the
schedulability and the reliability constraints.

A. Satisfying Schedulability Constraints

We assume a commonly used mixed-criticality scheduling
algorithm, i.e., the EDF-VD algorithm [7], is used in schedul-
ing mixed-criticality task set. With the EDF-VD algorithm,
when system operates under the LO-mode, tasks are scheduled
using EDF algorithm with reduced deadline, i.e., VD. In other
words, to guarantee HI-criticality tasks have enough time to
finish their executions when system changes from LO-mode
to HI-mode, each HI-criticality task is assigned a reduced
deadline when system operates under LO-mode. When system
changes to HI-mode, each HI-criticality task’s deadline is reset
to its original deadline. Ekberg [12] proposed a virtual deadline
assignment strategy to schedule a mixed-criticality task set on
a mono-speed system. The basic idea is to iterate time points
in a task set’s hyperperiod and check whether the resource
demanded by the task set is always no more than the resource
provided by the system.

However, in the problem we are to address, in addition to
the schedulability constraint, reliability constraint must also
be taken into consideration. Furthermore, tasks can use scaled
frequencies to save the energy. Hence, we cannot directly
apply this analysis to solve the problem formulated in III-B.

For a given task-frequency assignment, suppose the fre-
quency fi is assigned to the task τi, by looking up the MRT
table (see discussion below in Section IV-B), we can obtain
the minimum number of recoveries (ai) needed to satisfy its
reliability constraint. The next question is, by executing task
τi under frequency fi with ai recoveries, whether the mixed-
criticality task set is schedulable under EDF-VD.

For a given mixed-criticality task set Γ, according to [12],
it is schedulable if the following two conditions are satisfied:

∀l ∈ [0, H] :
∑
τi∈Γ

dbfLO(τi, l) ≤ l (6)

∀l ∈ [0, H] :
∑
τi∈ΓH

dbfHI(τi, l) ≤ l (7)

where H is the hyperperiod of Γ, and ΓH represents the
set of the HI-criticality tasks in Γ. For task τi, dbfLO(τi, l)
denotes the the total demanded execution time from time 0 to
time l under the LO-mode. dbfHI(τi, l) denotes the execution
time demand under the HI-mode within a time interval with
duration as l.

In the next two sections, we give the calculation of
dbfLO(τi, l) and dbfHI(τi, l), respectively.

1) LO-mode Demand Bound Function:
Before analyzing the task’s demand bound function under
the LO-mode, we first give the worst case recovery scenario.
Given a task set Γ = {τ1, ..., τn} with the frequency assign-
ment as {f1, ..., fn} and recovery allowance as {a1, ..., an},
according to [16], the worst case scenario is that the first ai
instances of every task τi ∈ Γ fail and need recoveries. If
and only if all the deadlines can be met under this worst case
scenario, the whole task set are guaranteed to be schedule
under the LO-mode. Our task’s demand bound functions in
LO-mode is based on such scenario.

For a given periodic task τi in the task set Γ, assume
its period is Ti, the assigned frequency is fi, the recovery
allowance is ai and the deadline under the LO-mode, i.e., the
virtual deadline, is VDi. For the first ai periods, τi needs both
execution and recovery, therefore the overall needed processor
time is (1 + fmax

fi
) · Ci(LO); for all other instance periods,

τi only needs execution time Ci(LO) without the need for
recovery. If l ≤ ai · Ti, then there are at most b l−VDi

Ti
c + 1

instances in time interval l that need both execution and
recovery time; if l > ai · Ti, other than the first ai instance,
there are at most b l−ai·Ti−VDi

Ti
c + 1 instances that only need

execution. Combine both cases together, we have the demand
bound function of τi:

dbfLO(τi, l) =


J(b l−VDi

Ti
c+ 1) · (1 + fmax

fi
) · Ci(LO)K0,

if l ≤ ai · Ti;
ai · (1 + fmax

fi
) · Ci(LO)+

J fmax
fi
· (b l−ai·Ti−VDi

Ti
c+ 1) · Ci(LO)K0,

otherwise.

(8)

where JxK0 = max{x, 0}.
2) HI-mode Demand Bound Function:

When system changes to the HI-mode, all the LO-criticality
tasks are removed and all the HI-criticality tasks operate under
fmax. It is possible that at the mode switch point, there is
a carry-over instance which has execution both in LO-mode
and HI-mode. Moreover, for a given task τi, if the execution
of the carry-over instance in HI-mode is shorter than Di −
VDi, then there is no execution or recovery left for the HI-
mode, otherwise τi is unschedulable in LO-mode if the mode
switch does not happen. Hence, Di−VDi is the shortest length
of τi’s HI-mode portion that makes τi can have execution or
recovery in HI-mode. In addition, for the carry-over instance,
it is possible that part of the execution has already been done
in LO-mode at a scaled down frequency fi (fi ≤ fmax) and it
may already encounter fault(s). As we assume fault detection is
taken at the end of each task instance, which means this carry-
over instance can only be detected as fault after its remaining

part is finished under HI-mode. This would waste the time
used to execute the already failed task. In order to save the
processor time, for carry-over instance, instead of taking fault
detection at its end, we do the fault detection at the mode
switch point, i.e., if the task instance is detected with fault,
we re-execute the task from the beginning; otherwise, continue
to finish its remaining part. Hence, for τi, the maximum time
demand for its carry-over instance is Ci(HI) which is used
to finish its execution.

Based on the shortest length and the maximum time demand
of the HI-mode portion of a carry-over instance, we give the
task’s worst-case scenario of time demand in the HI-mode: 1)
the mode switch takes place right before a instance’s virtual
deadline, and 2) this instance needs to be recovered in the
remaining Di − V Di time interval.

Under the worst case scenario, the demand bound of a given
task τi in HI-mode contains two parts. In a time interval l,
τi’s carry-over job need Ci(HI) recovery time in the first
Di − V Di time interval. For the remaining l − (Di − VDi)
parts, there are at most b l−(Di−VDi)

Ti
c complete instances with

time demand of Ci(HI) for each. Therefore, for task τi with
virtual deadline VDi, its demand bound function in HI-mode
is calculated as:

dbfHI(τi, l) = J(b l − (Di − VDi)
Ti

c+ 1) · Ci(HI)K0 (9)

With both dbfLO and dbfHI, we can then apply (6) and (7)
to do the schedulability analysis for a given task set.

B. Reliability Analysis

For a periodic task with a given task-level reliability con-
straint, the task running under lower frequency needs more
recoveries to meet the reliability constraint. According to the
reliability model (formula (3)), if the task executes under a
frequency fi, a minimum number of recovery during the task
set’s hyperperiod, denoted as ai, should be guaranteed to meet
its reliability requirement. Zhao [10] proposed a formula to
calculate the value of ai and record these values in a table
called Minimum Recovery Table (MRT). In other words, the
entry MRTi,j of MRT is the minimum number of recovery
needed for task τi executing under frequency fj . The details
on how to obtain MRT entry can be found in [10].

V. HEURISTIC SEARCH BASED ENERGY MINIMIZATION
ALGORITHM

If a frequency fi is assigned to a task τi , the minimum
number of recovery allowance ai to meet the reliability
constraint can be obtained by looking up the MRT table. In
addition, if the modified deadline of τi under the LO-mode is
given as VDi, formula (6) and (7) can be used to check if the
schedulability constraint is satisfied. However, for a task τi,
its modified deadline is not given as a priori. Hence, the next
question is, for each task τi ∈ Γ, how to determine, if it exists,
the modified deadline VDi which can satisfy the schedulability
constraint.

With given dbfLO(τi, l) and dbfHI(τi, l) for each task τi,
Ekberg [12] developed a GREEDY algorithm to determine

the virtual deadline assignment strategy to schedule the mixed-
criticality task set on a mono-speed system. The general idea is
to gradually reduce each HI-criticality task’s original deadline
until the resource demand of the whole task set is no more
than the total resource the system can be provided under both
LO-mode and HI-mode.

In our system, there are multiple working frequencies
available. For the given frequency assignment to the task
set, GREEDY can determine if the task set is schedulable
with a given reliability requirement. However, there may be
multiple frequency assignments satisfying the schedulability
and reliability constraints, then the next question is how to
find the one with the minimum energy consumption.

Brute force search may find the best frequency to task
assignment, however, it is impractical for large task set. Hence,
in this paper, we propose a heuristic search approach, the major
steps can be highlighted as follows:

1) initially, all the tasks are running under the fmax,
2) choose one task to scale down its frequency without

violating the reliability and schedulability constraints;
3) re-do step 2) -3) until no task in step 2) is available.

In step 2), there may be more than one task can be scaled
down without violating the reliability and schedulability con-
straints, the question is which task should be chosen? Noticing
that, though reducing task’s frequency decreases the energy
consumption, it demands extra time for task’s execution and
recovery, i.e., it will increase the resource demand. Hence, we
define a metric, i.e., ED(τi, fi, f

′
i), which is to measure the

energy saving per unit resource cost for a task τi by reducing
its frequency from fi to a lower one f ′i .

ED(τi, fi, f
′
i) =

EC(fi)− EC(f ′i)

Gap(F)− Gap(F ′)
(10)

where F = {f1, ..., fi, ..., f|Γ|} and F ′ = {f1, ..., f
′
i , ..., f|Γ|}.

Gap(F) indicates the smallest gap between the supply bound
function and the demand bound function of the task set Γ
during a hyperperiod H under the selected frequency set F .
Gap(F) is defined as:

Gap(F) = min
l∈[0,H]

{g(l)} (11)

where g(l) is represented as:
g(l) = l −

∑
τi∈Γ

dbfLO(τi, l) (12)

When scaling down a task’s executing frequency, the expected
energy consumption must decrease. Since tasks executing
under a lower frequency indicates a longer execution time,
and theoretically, its resource demand will increase and hence
Gap(F ′) < Gap(F). However, according to the formula (8)
and (9), the demand bound calculation is based on the virtual
deadline (VD), the GREEDY algorithm [12] we used to find
the virtual deadline is a heuristic approach, hence, the found
solution is not the optimal. Therefore, it is possible that
Gap(F ′) ≥ Gap(F).

Based on the above observation, we give our task selection
policy (TSP) as follows:
• if there exists negative value of ED, choose the one with

largest negative ED value;

• otherwise, choose the one with largest ED value.
Based on the defined metric (ED) and the task selection pol-

icy, we detail the heuristic search based energy minimization
(HSEM) approach in Algorithm 1.

The pseudo-code code of the function CHECK(Γ, F, FI, i)
is given in Algorithm 2. Firstly, we search the MRT table to
obtain each task’s recovery number with given frequency as-
signment indices FI . Then we use GREEDY(Γ, F, FI,A) [12]
to test the schedulability of the whole task set with given
frequencies.

In Algorithm 1, Line 3 is to find the sub task set I where
each task in I can be further scaled down by one level without
violating schedulability and reliability constraints. Line 5 is to
choose the one based on our proposed task selection policy.

ALGORITHM 1: HSEM(Γ,F = {fmax, ..., fmin})
1 int[|Γ|] FI = {0, .., 0};
2 while ∃i : FI[i] < |F | do
3 find

I = {i|CHECK(Γ, F, FI, i) == TRUE ∧ 0 ≤ i ≤ |Γ| − 1}
4 if I is not empty then
5 find τk based on TSP
6 FI[k] = FI[k] + 1;
7 end
8 else
9 break;

10 end
11 end
12 return FI;

ALGORITHM 2: CHECK(Γ, F, FI, i)

1 int[|Γ|] A={0,...,0};
2 FI[i] = FI[i] + 1
3 for (j = 0; j < |Γ|; i++) do
4 A[j] = Obtain from MRT with F [FI[j]] and MRT;
5 end
6 if (GREEDY(Γ, F, FI,A) == SUCCESS) then
7 return TRUE;
8 end
9 return FALSE;

VI. EVALUATION

In this section, we evaluate the performance of the HSEM
algorithm. We compare the normalized energy consumption
obtained by the HSEM algorithm with that of other two
heuristics: the LUF (Largest Utilization First) and the SUF
(Smallest Utilization First). The LUF and SUF heuristics
are same with our HSEM algorithm except the policy of
choosing which task to scale down its frequency. To be
more specifical, LUF chooses the task with largest HI-mode
utilization among tasks without violating the reliability and
schedulability constraints; while SUF chooses the one with
the smallest HI-mode utilization.

A. Experimental Setting

In the following experiments, the mixed-criticality task
sets are generated using UUniForm algorithm [17], which

gives an unbiased distribution of utilization values. There
are total six tasks in a task set. Among them, three are of
HI-criticality and three are of LO-criticality. More specifi-
cally, we take the following steps to generate a valid task
set: (1) the UUniForm algorithm is used to generate HI-
criticality and LO-criticality task sets with HI-mode utiliza-
tion UH(ΓH) =

∑
τi∈ΓH

uH(τi) and LO-mode utilization
UL(ΓL)

∑
τi∈ΓL

uL(τi), respectively; (2) task period Ti is
randomly selected from [100, 2500]; (3) task execution time
Ci(HI) is set as Ti · uH(τi), ∀τi ∈ ΓL : Ci(LO) = Ci(HI),
and ∀τi ∈ ΓH : Ci(LO) = µ · Ci(HI), where µ is a random
value within the range of [0.1, 0.5] and (4) the value of Ci(LO)
must be a positive integer.

For energy model, we assume Pind = 0.1, Cef = 1, and θ =
3. The available frequencies are set as F = {0.4, 0.6, 0.8, 1}.
For transient fault model, we assume the average fault arrival
rate at fmax is λ0 = 10−6, and d = 3.

To compare the algorithm performance, we normalize en-
ergy consumption obtained by the three heuristics to the energy
consumption when all tasks run under the highest frequency
fmax = 1. For each experiment, we generate 100 task sets and
the average value is used to evaluate the performance.

B. Experiment Results and Discussions

First, we set UH(ΓH) = 0.3 and change UL(ΓL) from 0.3
to 0.7 with step 0.05. The experiment results are shown in
Fig. 1(a). We have the following observations: (1) as task
set utilization increasing, the energy consumption of three
approaches increase; (2) the HSEM algorithm can save as
much as 19.72% and 6.57% more energy than LUF and SUF,
respectively, however, the advantage diminishes with task set
total utilization increasing; (3) the energy consumption of three
approaches converge when the utilization is high. Second,

0.3 0.4 0.5 0.6 0.7
60

65

70

75

80

85

90

95

(a) UL(ΓL)

N
or

m
al

iz
ed

E
ne

rg
y(

%
)

LUF
SUF

HSEM

0.3 0.4 0.5 0.6 0.7
60

65

70

75

80

85

90

95

(b) UH(ΓH)

N
or

m
al

iz
ed

E
ne

rg
y(

%
)

LUF
SUF

HSEM

Fig. 1. Normalized Energy Consumption (%)

we set UL(ΓL) = 0.3 and change UH(ΓH) from 0.3 to
0.7 with step 0.05. The experiment results are depicted in
Fig. 1(b) which shows similar observations. But the advantages
of HSEM over LUF and SUF are a little smaller (19.16% and
5.07%) comparing to when UH(ΓH) is fixed.

In summary, based on experimental results, the HSEM al-
gorithm can find a task set execution strategy with less energy
consumption than that found by SUF and LUF algorithms.

VII. CONCLUSION

In this paper, we have analyzed the resource demand of
a mixed-criticality task set with both deadline and reliability

constraints under a given frequency assignment. Based on the
resource demand analysis, we propose HSEM algorithm to
find a frequency assignment which can minimize system’s
energy consumption without violating system’s reliability and
schedulability constraints. We use experiments to compare
HSEM with two heuristics (LUF and SUF), Our experimental
results indicate that the HSEM algorithm outperforms SUF
and LUF algorithms with respect to energy saving.

In the current work, a task’s reliability requirement is
assumed to be the one running the whole task under fmax, our
future work is to extend our developed theory and algorithm to
address the problem under any given reliability requirement.

REFERENCES

[1] A. Burns and R. I. Davis, “Mixed criticality systems: A review,”
Department of Computer Science, University of York, East Lansing,
Michigan, Tech. Rep. MCC-1(b), February 2013.

[2] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd, Nov 2011, pp. 34–43.

[3] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy,
J. Scoredos, P. Stanfill, D. Stuart, and R. Urzi, “A research agenda for
mixed-criticality systems,” in Cyber-Physical Systems Week, Apr. 2009.

[4] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with
multiple criticality specifications,” in Real-Time Systems, 2008. ECRTS
’08. Euromicro Conference on, July 2008, pp. 147–155.

[5] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Real-Time Systems (ECRTS), 2012 24th
Euromicro Conference on, July 2012, pp. 135–144.

[6] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management
on reliability in real-time embedded systems,” in Proceedings of the
IEEE/ACM International conference on Computer-aided design, ser.
ICCAD, 2004, pp. 35–40.

[7] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in Real-
Time Systems (ECRTS), 2012 24th Euromicro Conference on, July 2012,
pp. 145–154.

[8] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, March 2013, pp. 147–152.

[9] D. Zhu, “Reliability-aware dynamic energy management in depend-
able embedded real-time systems,” ACM Trans. Embed. Comput. Syst.,
vol. 10, no. 2, pp. 1–27, 2011.

[10] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general
task-level reliability constraints,” 2013 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), vol. 0, pp.
285–294, 2012.

[11] ——, “Generalized reliability-oriented energy management for real-
time embedded applications,” in Proceedings of the Design Automation
Conference, ser. DAC, 2011, pp. 381–386.

[12] P. Ekberg and W. Yi, “Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,” Real-time systems, vol. 50,
no. 1, pp. 48–86, 2014.

[13] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for
mixed criticality systems,” in Real-Time Systems Symposium (RTSS),
2011 IEEE 32nd. IEEE, 2011, pp. 34–43.

[14] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power
management through shared recovery technique,” in Proceedings of the
International Conference on Computer-Aided Design, ser. ICCAD, 2009,
pp. 63–70.

[15] D. Zhu and H. Aydin, “Energy management for real-time embedded
systems with reliability requirements,” in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, ser. ICCAD, 2006,
pp. 528 –534.

[16] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for
overloaded systems that allow skips,” in Real-Time Systems Symposium,
1995. Proceedings., 16th IEEE. IEEE, 1995, pp. 110–117.

[17] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

