
Schedulability Analysis for Real-time Task Set on
Resource with Performance Degradation and

Periodic Rejuvenation
Xiayu Hua, Chunhui Guo, Hao Wu, Douglas Lautner†, Shangping Ren ∗

Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616, USA
{xhua, cguo13, hwu28, dlautner}@hawk.iit.edu, ren@iit.edu

Abstract—Most schedulability analyses in the literature assume
that the performance of computing resource does not change over
time. However, due to ever increased complexity of computer
systems, software aging issues become more difficult, if not
impossible, to eradicate. Hence, the assumption that computing
resource has a constant performance in its entire lifetime does
not hold in real world long-standing systems. In this paper,
we study real-time task schedulability under a resource model
that the resource’s performance degrades with a known degra-
dation function and the resource is periodically rejuvenated.
The resource model is referred to as P 2-resource model for
performance degradation and periodic rejuvenation. We address
three real-task schedulability related questions under the P 2-
resource model, i.e., (1) resource supply bounds of the P 2-
resource; (2) task set utilization bounds under Earliest Deadline
First (EDF) and Rate Monotonic (RM) scheduling policies,
respectively; and (3) experimentally study the tightness of the
bounds developed, and the impact of resource degradation rate,
rejuvenation period, and rejuvenation cost on the bounds.

I. INTRODUCTION

Since the publication of the seminal paper by Liu and
Layland [1] in 1973, the problem of real-time task scheduling
under different resource models has been studied intensively.
However, most of the studies rely on a strong assumption that
the computing resource’s performance does not change during
its lifetime. Unfortunately, for many long-standing real-time
applications, such as data acquisition systems (DAQ) [2], [3],
deep-space exploration programs [4], [5] and SCADA systems
for power, water and other national infrastructures [6], [7], the
performance of computational resources decrease notably after
a long and continuous execution period.

Over a twenty-day period we collected CPU and memory
usage data using monitoring software [8] deployed on a
Fermilab control system. As shown in Fig. 1, both CPU
and memory consumptions increase with time. As the data
monitoring software is the only application deployed on the
computer, under normal operation, both CPU and memory
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consumption used by the software would remain at a constant
level. Therefore, the increase of resource demand indicates that
the amount of computational power provided by the system in
a unit time keep decreasing when the system is running.
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Fig. 1. Aging Effect on Fermi Monitoring System

The root cause of this phenomenon is software error ac-
cumulation and memory leak, which is also referred to as
software aging problem [9]. Software bugs generally exist in
any software, especially large and complex software systems.
It is impractical, if not impossible, to determine and fix all of
the bugs in software [9]. Due to the software aging problem,
from application’s perspective, the resources’ performance
continuously decreases while the application is running and
hence the execution of the application keeps slowing down. If
the running time of a system is sufficiently long, the software
errors could consume all of the resources and eventually the
application would stop working.

Apparently, the traditional resource models which assume
the resource performance does not change are not accurate
for real world scenarios where the software aging problem
is ubiquitous and the resource performance degradation is
unavoidable. To keep the long-standing system functional,
software rejuvenation [10], [11] techniques are introduced as
the countermeasure to recover the resource performance. How-
ever, software rejuvenation also introduces extra overhead.



Specifically, when resources are performing software rejuve-
nation, they are not available to the applications. Since fast
rejuvenation methods are introduced in the literature , such as
application-level rejuvenation [12], [13], the unavailable time
of resource is tolerable for tasks with relatively long period,
such as the status monitor system used in FermiLab [8]. From
application’s perspective, such resources are only periodically
available and even within their available time, the performance
of the resources are continuously decreasing. To reflect these
characteristics, we introduce a new resource model, the P 2-
resource, to feature resources with performance degradation
and periodic rejuvenation. Under the P 2-resource model, we
study (1) resource supply bound provided by the P 2-resource;
(2) task set utilization bounds under Earliest Deadline First
(EDF) and Rate Monotonic (RM) scheduling policies, re-
spectively; and (3) experimentally study the tightness of the
bounds developed, and the impact of resource degradation rate,
rejuvenation period, and rejuvenation cost on the bounds.

The rest of the paper is organized as follows: we discuss
related work in Section II. The P 2-resource model is formally
defined in Section III. The resource supply bound and linear
supply bound of a P 2-resource are studied in Section IV.
The utilization bounds for a task set under the EDF and
RM scheduling policies on a P 2-resource are presented in
Section V and Section VI, respectively. We further study
the tightness of the two bounds and the impacts of different
resource factors on the two bounds with experiments in
Section VII. We conclude our work in Section VIII.

II. RELATED WORK

In 1973, Liu and Layland first introduced the Earliest Dead-
line First (EDF) and the Rate Monotonic (RM) scheduling
policies for real-time systems and provided the utilization
bounds for both EDF and RM scheduling policies [1]. In
the following four decades, the real-time scheduling problem
has been extensively studied. The main research focus is on
developing new scheduling algorithms for real-time scheduling
problems [14], [15] and improving utilization bounds for both
EDF and RM scheduling policies on single [16] and multiple
processors [17] under different constraints (preemptive [18] vs
non-preemptive [19]) and for different task models ( harmonic
task set [14], mixed-criticality task set [20], etc. ). However,
most of the aforementioned work is based on a continuous
and constant resource model, i.e., the resource is always
available to applications and its performance does not change
as illustrated in Fig. 2(a).

One exception is the research on the resource with Dynamic
Voltage and Frequency Scaling (DVFS) ability. To reduce
energy consumption of task execution, the speed of modern
processors can be lowered via (DVFS) technology [21], [22].
Hence, in a DVFS-available system, the resource model is
changed from the continuous and constant resource model
to a continuous resource model with performance variations,
as illustrated in Fig. 2(b). The schedulability analysis based
on the DVFS resource model is studied intensively by the
research community [21], [22], [23]. In the literature, the task
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Fig. 2. Resource Models

schedulability study under the DVFS resource model makes
two major assumptions: (1) resource can be switched between
different performance levels and once it is switched to one
level, the performance is stablized until the next switch takes
place [24], [22], and (2) the performance change via DVFS is
controllable and voluntary [22], [23].

On the other hand, as pointed in [25], [26], software aging
problem is essentially error accumulation and memory leaking
caused by software defects which are difficult to eradicate
if at all. As shown in Fig. 2(c), the computing resource is
inconsistent since it is unavailable to the tasks during rejuvena-
tion. Therefore, schedulability analysis on the continuous and
constant resource models can not be used on a P 2-resource.

For DVFS, at a high level, it can be considered as controlled
aging (if we continuously scale down the frequency), and
the switching overhead can also be mapped as rejuvenation
overhead. However, as between two consecutive switches, the
frequency remains the same which makes it different from
P 2-resource resource model that the resource is decreasing
within each rejuvenation period. Also, dislike DVFS resources,
the performance degradation of a P 2-resource caused by
software aging is progressive and involuntary. Therefore, the
DVFS resource model is also insufficient for addressing a P 2-
resource.

In another aspect, due to the resource performance degra-
dation, the application will eventually stop working, which
is unacceptable by any system. Hence, software rejuvenation
technology is introduced as a countermeasure [9], [10], [27].
Through periodically rejuvenations, systems keep regaining
their original performances. However, the computing resource
becomes unavailable to applications when the rejuvenation is
in progress. Therefore, from an application’s point of view,
resource with rejuvenation can be characterized as a P 2-
resource that is periodically available and with performance
degradation as illustrated in Fig. 2(d).

From Fig. 2(d), it is not difficult to see that the P 2-



resource is a periodic resource. The concept of the constant
periodic resource was first introduced by Shigero et al. in
1999 [28]. Mok et al. [29] and Feng et al. [30] extended
Shigero’s original periodic resource model to the fixed-pattern
periodic resource model and provided theoretical analysis on
the schedulability of real-time task set under this model. Later,
Shin et al. further extended the fixed-pattern periodic resource
model to the dynamic pattern periodic resource model and
provided formal analysis under both EDF and RM scheduling
policies [31], [32]. However, all the literature work on periodic
resources are based on one general assumption, i.e., when
resources are available to applications, their computational
power do not change. Hence, none of the existing theoretic
results obtained under constant performance periodic resources
can be directly applied under the P 2-resource model.

If considering the resource performance degradation as a
special task, we can transform a resource with periodical
performance degradation to a regular continuous and constant
resource with a hidden task that has periodically increasing
resource consumption running upon. Fig. 2(f) depicts this
scenario. A similar case is studied in [33] where the authors
call this special task a rhythmic task. In their work, they
define the rhythmic task as a task with decreasing period
and hence increasing utilization. The authors studied the
schedulability when the system has one rhythmic task and
one or multiple regular tasks. Their results are based on the
assumption that the period of the rhythmic task is smaller than
any of the regular tasks. However, for the problem we intend
to solve, the rejuvenation period is often much larger than
any of application tasks’ periods due to the slow progress of
aging effect [34]. Hence, the method of considering resource
degradation as a rhythmic task can not be directly applied.

In this paper, we focus on the schedulability analysis for
the P 2-resource model under both EDF and RM scheduling
policies. We believe that the P 2-resource model is a more
generalized resource model that can be easily transformed to
the continuous and constant resource model [1] and constant
periodic model [32]. In the next section, we formally define the
P 2-resource model and formulate the problems to be studied
in the paper.

III. MODELS AND PROBLEM FORMULATION

A. Resource model and assumptions

As illustrated in Fig. 2(d), we consider both the performance
degradation and the rejuvenation time cost and model the
resource. Note that by resource performance, we mean the
computation cycles per unit time provided by the resource
to applications. In the following section, we first provide the
definitions and models used in this paper and then give the
formal formulation of the problems we are to solve.

Resource performance degradation function
We use function f(t) to denote the resource performance

at time t. We assume that f(t) is continuous, non-increasing
and f(0) = 1.

Resource Rejuvenation
We assume that the resource is repeatedly rejuvenated with

period π and that the resource performance never decreases
to zero, i.e., f−1(π) > 0, where f−1(π) is the time duration
that the resource decreases from fully performing to not
working. We also assume that the rejuvenation process is
atomic and each rejuvenation takes φ time to complete. After
each rejuvenation, the resource performance is reset to f(0),
i.e., f(kπ) = f(0) where k ∈ N+.

P 2-resource Model
A P 2-resource R is characterized by a triple (f(t), π, φ),

where f(t) is the performance degradation function, π is the
resource rejuvennation period, and φ is the rejuvenation time
cost. We assume the resource starts at time zero.

Task Model
The task model considered in this paper is similar to

the one defined by Liu and Layland [1]. A task set Γ =
{τ1, τ2, . . . , τn} has n independent periodic tasks that are all
released at time 0. Each task τi ∈ Γ is a 2-tuple (Pi, ei), where
Pi is the inter-arrival time between any two consecutive jobs
of τi (also called period), and ei is the task execution time
calibrated under maximum performance f(0) = 1 of a given
P 2-resource. The utilization of the task set Γ is denoted as
UΓ, where

UΓ =
∑
τi∈Γ

ei/Pi

We use H to denote the hyper-period of Γ where H is the
least common multiple of Pi for all τi ∈ Γ.

We use Pmin to denote the minimum task period of the task
set Γ, i.e.,

Pmin = min{Pi|∀τi ∈ Γ}.

If Pmin ≤ φ, a task set is not schedulable in the worst case.
Hence, we assume Pmin > φ.

B. Problem formulation

This paper meant to study real-time task schedulability
under the P 2-resource. We take two steps to address the
problem. First, we analyze the minimal resource supply of a
P 2-resource in a time interval with a given length. Second, we
present the sufficient utilization bounds (UB) under both EDF
and RM scheduling policies for a task set on a P 2-resource.
The two problems are as follows.

Problem 1. Given a P 2-resource R(f(t), φ, π), determine its
supply bound function and linear supply bound function.

Problem 2. Given a P 2-resource R(f(t), φ, π) and a task set
Γ, determine the utilization bounds of task set Γ on R under
EDF and RM scheduling policies, respectively.

As for any P 2-resource, the strategy to solve the problems
are the same. To simplify mathematical transformations and
deviations, and focus more on analysis strategies, in the



following sections we assume that the resource performance
function is a linear decreasing function, i.e.,

f(t) = 1− a · t (1)

where a is a constant and 0 ≤ a < 1.

IV. P 2-RESOURCE SUPPLY BOUND ANALYSIS

To analyze task schedulability on P 2-resources, we first
need to analyze the resource’s supply bound. In this section,
we present the supply bound function (SBF) and the linear
supply bound function (LSBF) of a P 2-resource.

We use θ to denote the total computational cycles provided
by a P 2-resource within one rejuvenation period (π), which
is given by the following equation.

θ =

∫ π−φ

0

f(t)dt (2)

In the next step, we derive the minimal supply bound
function of a P 2-resource R.

Lemma 1. Given a P 2-resource R(f(t), φ, π), its minimal
supply function (msf) in a time interval with length t(t ≤ π)
is

msf(t, π, φ) =

{ ∫ π−φ
π−t f(x)dx if φ < t ≤ π

0 if 0 ≤ t ≤ φ
(3)

Proof. We prove the lemma in the following two complemen-
tary cases separately.
Case 1: 0 ≤ t < φ

As resource R is not available during its rejuvenation cost
φ, hence the worst case is that the entire time interval is in the
rejuvenation period. Therefore, like time interval t1 in Fig. 3,
the minimal resource supply is 0 in this case.
Case 2: φ ≤ t ≤ π

We assumed in Section III that the resource’s performance
function f(x) is a non-increasing function. Hence, the minimal
resource supply when 0 < t ≤ π is

∫ π−φ
π−t f(x)dx. Time

interval t2 in Fig. 3 is an example of this case.

Fig. 3. Minimal Supply Function

We now extend the time interval length to an arbitrary value
and give the P 2-resource’s supply bound function and linear
supply bound function in the following theorems.

Theorem 1. Given a P 2-resource R(f(t), φ, π), its supply
bound function (SBF) is

sbf(t) =

⌊
t

π

⌋
θ + msf(t mod π, π, φ). (4)

Proof. For a given time interval t, it contains
⌊
t
π

⌋
entire

periods that provide
⌊
t
π

⌋
θ amount of resource. For the re-

maining part of the time interval, its length is (t mod π) and
its minimal resource supply is msf(t mod π, π, φ). Hence, the
supply bound function is calculated as Eq.(4).

Theorem 2. Given a P 2-resource R(f(t), φ, π), we have:
(1) the resource’s linear supply bound function lsbf(t) is the

lower bound of the sbf(t), i.e.,

∀t : lsbf(t) ≤ sbf(t) (5)

where
lsbf(t) =

θ

π
(t− Tp) + msf(Tp, π, φ) (6)

and Tp = max{π − π−θ
aπ , φ},

(2) the lsbf(t) a tight bound of the sbf(t), i.e.,

∃t : lsbf(t) = sbf(t) (7)

Proof. To prove the theorem, we consider when nπ ≤ t <
nπ + φ and when nπ + φ ≤ t < (n + 1)π separately, for all
n ∈ N.

1) When nπ ≤ t < nπ + φ:
Based on Eq.(4), we have sbf(t) = nθ. As lsbf(x) is
a monotonically increasing function, we have lsbf(t) <
lsbf(nπ + φ). Now, we need to prove lsbf(nπ + φ) ≤
nθ. We consider the following two complementary cases
based on the two different values of Tp:
• Case 1: Tp = φ. Since msf(φ, π, φ) = 0 and lsbf(x)

is a non-decreasing function, we have

lsbf(nπ+φ) =
θ

π
(nπ+φ−Tp)+msf(Tp, π, φ) = nθ

(8)
• Case 2: Tp = π − π−θ

aπ ≥ φ. Since f(x) is a non-
increasing function, we have f(π−φ) ≤ f(π− (π−
π−θ
aπ )) = θ

π and

msf(t, π, φ) =

∫ π−x

π−φ
f(t)dt ≤ θ

π
(t− φ)

Therefore, msf(Tp, π, φ) ≤ θ
π (Tp− φ) and

lsbf(nπ+φ) ≤ θ

π
(nπ+φ−Tp)+msf(Tp, π, φ) ≤ nθ

Since for both cases, lsbf(nπ + φ) ≤ nθ, we have
lsbf(t) ≤ sbf(t) when nπ ≤ t < nπ + φ.

2) When nπ + φ ≤ t < (n+ 1)π:
For this scenario, we want to prove sbf(t)− lsbf(t) ≥ 0.
To simplify the notation, we let t′ = t mod π.
• Case 1: Tp = φ. We first do the following transfor-

mation.

sbf(t)− lsbf(t) =

nθ + msf(t′, π, φ)− θ

π
(t− φ)− msf(φ, π, φ)

= msf(t′, π, φ)− θ

π
(t′ − φ)



Since Tp = φ, which indicates π − π−θ
aπ ≤ φ, we

have f(π−φ) ≥ f(π− (π− π−θ
aπ )) = θ

π . Therefore,

msf(t, π, φ) =

∫ π−x

π−φ
f(t)dt ≥ θ

π
(t− φ)

and hence msf(t′, π, φ) ≥ θ
π (t′−φ), which indicates

sbf(t)− lsbf(t) ≥ 0.
Specially, when t′ = Tp = φ, sbf(t) = lsbf(t).

• Case 2: Tp = π− π−θ
aπ . Similar to the proof in Case

1, we do the following transformation:

sbf(t)− lsbf(t) =

= nθ + msf(t′, π, φ)− θ

π
(nπ + t′ − Tp)

− msf(Tp, π, φ)

= msf(t′, π, φ)− θ · t′

π
− msf(Tp, π, φ) +

θ · Tp
π

Let S(t) = msf(t, π, φ) − θ·t
π , then S′(Tp) = 0

which indicates function S(t) has an extreme value
when t = Tp. Moreover, as ∀t ∈ [nπ + φ, (n +
1)π), S′′(Tp) > 0, then when t = Tp, function S(t)
has the minimal value. Therefore,

sbf(t)− lsbf(t) = S(t′)− S(Tp) ≥ 0

Specially, when t′ = Tp, sbf(t) = lsbf(t).
Combine both scenarios together, we have ∀t, sbf(t) −

lsbf(t) ≥ 0. Furthermore, when t = Tp, sbf(t) = lsbf(t).
Hence, Theorem 2 always holds.

Intuitively, lsbf(t) is the tangent line of sbf(t) and Tp is their
first tangent point. Fig.4 depicts the relationship of lsbf(t) and
sbf(t).

Fig. 4. SBF and LSBF

V. TASK SET UTILIZATION BOUND ON
P 2-RESOURCE UNDER THE EDF SCHEDULING POLICY

Based on the supply bound analysis of P 2-resource given
in Section IV, we derive the sufficient utilization bound under
EDF scheduling policy in this section.

Since the task model we use in this paper is the same as
the task model used in [32], the linear demand bound function
(LDBF) for a task set and the schedulability condition under
EDF scheduling policy are the same.

Definition 1. [32] Given a task set Γ, its linear demand bound
function (LDBF) under EDF scheduling policy is defined as

ldbfEDF(t) = UΓ · t. (9)

Theorem 3. [32] Given a task set Γ and a P 2-resource
R(f(t), φ, π), Γ is schedulable on R under EDF scheduling
policy if

∀t ∈ [0, H] : dbfEDF(t) ≤ sbf(t) (10)

where H is the hyper-period of Γ and dbfEDF(t) =∑
τi∈Γ

⌊
t
πi

⌋
· ei.

To simplify the calculation, in the following corollary, we
further reduce the range of time interval length t that is needed
to be checked and replace both the demand bound and the
supply bound with their linear bounds, respectively.

Corollary 1. Given a task set Γ and a P 2-resource
R(f(t), φ, π), Γ is schedulable on R under EDF scheduling
policy if

∀t ∈ [Pmin, H] : ldbfEDF(t) ≤ lsbf(t) (11)

where H is the hyper-period of Γ.

Proof. For a time interval length t that t ∈ [0, Pmin),
dbfEDF(t) = 0. Since sbf(t) ≥ 0, dbfEDF(t) ≤ sbf(t) always
holds over t ∈ [0, Pmin). Hence, we only need to check
time interval length t ∈ [Pmin, H] when determining the
schedulability.

Moreover, according to Theorem 2, we have ∀t : lsbf(t) ≤
sbf(t). With ∀t : ldbfEDF(t) ≥ dbfEDF(t), we then have

∀t : ldbfEDF(t) ≤ lsbf(t)→ dbfEDF(t) ≤ sbf(t)

Therefore, Γ is schedulable on R under the EDF policy if
Eq.(11) holds.

In the next step, we analyze the relationship between the
LSBF and the LDBF and derive the utilization bound under
the EDF scheduling policy.

For a P 2-resource and a task set, we first give the definition
of the critical time interval length.

Definition 2. Given a P 2-resource R(f(t), φ, π) and a
schedulable task set Γ, the critical time interval length Tc
under the EDF scheduling policy is defined as

Tc =
θ
π · Tp− msf(Tp, π, φ)

θ
π − UΓ

(12)

In fact, the critical time interval length Tc is derived from
equation lsbf(t) = ldbfEDF(t). In the following lemma, we
prove that if a task set is schedulable, then Tc > 0. Also, if
a time interval’s length is equal or longer than Tc, we further
prove that within this time interval, the minimal resource
supply from the P 2-resource is assuredly equal or larger than
the maximal resource demand of a task set under the EDF
policy.

Lemma 2. Given a P 2-resource R(f(t), φ, π) and a schedu-
lable task set Γ, their critical time interval length Tc under
EDF satisfies the following conditions:{

Tc > 0

∀t ≥ Tc : lsbf(t) ≥ ldbfEDF(t).
(13)



Proof. Since Γ is schedulable on R, we have UΓ <
θ
π , which

indicates ldbf ′EDF(t) < lsbf ′(t). With ldbfEDF(0) = 0 and
lsbf(0) < 0, we then have Tc > 0.

Moreover, with lsbf(Tc) = ldbfEDF(Tc) and ldbf ′EDF(t) <
lsbf ′(t), we have ∀t > Tc : lsbf(t) > ldbfEDF(t).

Therefore, conditions in Eq.(13) hold.

With the critical time interval length and the schedulability
condition, we derive the utilization bound for a task set on a
P 2-resource under the EDF policy.

Theorem 4. Given a task set Γ and a P 2-resource
R(f(t), φ, π), the sufficient utilization bound under EDF
scheduling policy is

UBEDF(Pmin, a, π, φ) =
θ

π
−

θ
π · Tp− msf(Tp, π, φ)

Pmin
(14)

where Tp = max{π − π−θ
aπ , φ}.

Proof. According to Corollary 1, the task set Γ is schedulable
on the resource R if ∀t ∈ [Pmin, H] : ldbfEDF(t) ≤ lsbf(t).
Based on Lemma 2, we have ∀t ≥ Tc : ldbfEDF(t) ≤ lsbf(t).
Hence, the task set Γ is guaranteed to be schedulable on
resource R if Pmin ≥ Tc. By solving the formula Pmin = Tc,
we derive the utilization bound UBEDF as below:

UBEDF(Pmin, a, π, φ) =
θ

π
−

θ
π · Tp− msf(Tp, π, φ)

Pmin

The proposed P 2-resource model is a generalized model.
Suppose a resource has no performance degradation, then the
rejuvenation process is unnecessary, i.e., f(t) = 1 and φ = 0.
In this case, P 2-resource is de-generalized to a continuous and
constant resource and the utilization bound under EDF policy
UBEDF(Pmin, a, π, φ) becomes the utilization bound given by
Liu and Layland [1], i.e., UBEDF(Pmin, a, π, φ) = 1.

Corollary 2. Given a task set Γ and a P 2-resource R(1, π, 0),
the task utilization bound under the EDF scheduling policy is
UBEDF(Pmin, a, π, φ) = 1

Proof. For the given resource R(f(t), φ, π), let θ =∫ π−φ
0

f(t)dt = π. As f(t) = 1 and Tp ≥ φ, lsbf(Tp) =
Tp− φ = Tp. Based on Lemma 2, Tp always exists. Hence,

UBEDF(Pmin, a, π, φ) =
θ

π
−

θ
π · Tp− msf(Tp, π, φ)

Pmin

=
π

π
−

π
π · Tp− Tp

Pmin
= 1.

VI. TASK SET UTILIZATION BOUND ON
P 2-RESOURCE UNDER THE RM SCHEDULING POLICY

In this section, we analyze the sufficient utilization bound
for a task set on a P 2-resource under the RM scheduling
policy. First, we use a theorem and a corollary to derive
the utilization bound and the de-generalized utilization bound,
respectively, for a real-time task set on a P 2-resource under

RM scheduling policy. We then give the formal proof of the
utilization bound theorem.

Theorem 5. Given a P 2-resource R(f(t), φ, π) and a task
set Γ with task number n and minimal task period Pmin. The
utilization bound of the task set Γ on R under RM scheduling
policy is:

UBRM(Pmin, n, a, π, φ)

=
θ

π
· n[

(
1 +

kπ + π
θmsf(φ+ δ, π, φ)

kπ + φ+ δ

)1/n

− 1]
(15)

where k =
⌊
Pmin
π

⌋
, δ = max{min{λ, π − φ}, 0} and

λ = −a(φ+ kπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Similar to the utilization bound under EDF scheduling
policy, UBRM can also be de-generalized to the utilization
bound for RM policy given in [1] when P 2-resource is de-
generalized to the continuous and constant resource.

Corollary 3. Given a task set Γ and a P 2-resource R(1, π, 0),
the task utilization bound under RM scheduling policy is

UBRM(Pmin, n, a, π, φ) = n(21/n − 1)

Proof. Since f(t) = 1 and φ = 0, we have θ
π = 1 and msf(φ+

δ, π, φ) = φ+ δ. Therefore,

kπ + π
θmsf(φ+ δ, π, φ)

kπ + φ+ δ
=
kπ + φ+ δ

kπ + φ+ δ
= 1

and hence UBRM(Pmin, n, a, π, φ) = n(21/n − 1).

The following parts of this section are dedicated to prove
Theorem 5. To do so, we first determine the utilization bound
of a P 2-resource under the RM scheduling policy with the
restriction that the ratio between any two tasks’ period in Γ
is less than two. We then remove the restriction for arbitrary
task sets.

In our proof, we derive the utilization bound based on
a schedulable task set that has lowest utilization and fully
utilizes the resource, i.e., decreasing the period or increasing
the execution time of any task in this task set makes the task
set un-schedulable.

For a given resource R and a schedulable task set Γ that
fully utilizes R, we take three steps to derive the utilization
bound: (1) we first prove that if UΓ equals to the utilization
bound, the sum of task execution times of Γ is equal to
sbf(Pmin); (2) we then calculate the Pmin value for Γ that
minimizes UΓ; and (3) we derive the utilization bound based
on the found Pmin value.

Lemma 3. For a real-time task set Γ = {τ1, ..., τn} and a
P 2-resource R(f(t), φ, π), under the restriction that the ratio
between any two task periods of Γ is less than 2, if Γ fully
utilizes R under the RM scheduling policy with the smallest
possible UΓ, then it follows that



∑
τi∈Γ

ei = sbfR(Pmin) (16)

where Pmin is the smallest task period of Γ.

Proof. Although the resource models are different, but the
proof strategy of this lemma is similar with the proofs of
Theorem 4 in [1] and Lemma 9.1 in [32]. We provide the
detailed proof in the technical report [35].

Lemma 4. Given a real-time task set Γ = {τ1, ..., τn} and a
P 2-resource R(f(t), φ, π), let k =

⌊
Pmin
π

⌋
and let Pmin denote

the smallest task period of Γ. Under the restriction that the
ratio between any two task periods of Γ is less than two, if
Γ fully utilizes R under RM scheduling policy, then UΓ is
minimized when

Pmin = kπ + φ+ max{min{λ, π − φ}, 0} (17)

for all Pmin ∈ [kπ, (k + 1)π) where

λ = −(aφ+ akπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Proof. For all task sets of which Pmin ∈ [kπ, (k + 1)π), let
P ∗ denote the minimal task periods of the task set Γ∗ which
fully utilizes the resource R with minimal utilization. In the
following parts, we first prove that P ∗ ∈ [kπ + φ, (k + 1)π)
and then calculate the value of P ∗.

(a) Pmin ∈ [kπ, kπ + φ) (b) Pmin ∈ [kπ + φ, (k + 1)π)

Fig. 5. Transformation of Pmin

To prove P ∗ ∈ [kπ + φ, (k + 1)π), we consider the task
sets of which Pmin ∈ [kπ, kπ + φ). Let Γ denote one of such
task sets. As illustrated in Fig. 5(a), we transform Γ = {τi}
to Γ′ = {τ ′i} such that:

τ ′i =

{
τi(ei, Pi), if (Pi ≥ kπ + φ)

τi(ei, kπ + φ), otherwise,
(18)

Since the resource is under rejuvenation during the interval
[kπ, kπ + φ) in the worst case, we have sbf(Pmin) = kθ for
all Pmin ∈ [kπ, kπ + φ]. Therefore, Γ′ is still schedulable on
R after the transformation.

Also, since the transformation increases the periods of some
tasks, UΓ′ < UΓ. Therefore, all task sets with Pmin ∈ [kπ, kπ+
φ] can be transformed to Γ′ with lower utilization. In other
words, P ∗ ∈ [kπ + φ, (k + 1)π).

In the next step, we consider the task sets with Pmin ∈
[kπ+φ, (k+ 1)π). We let Γ denote one of such task sets and
transform Γ = {τi} to Γ′′ = {τ ′′i } such that{

e′′i = q · ei
P ′′i = q · Pi

(19)

where q = P∗

Pmin
. Fig. 5(b) illustrates the transformation. After

the transformation, UΓ = UΓ′′ and P ′′min = P ∗.
We first make an assumption that the transformed task set

Γ′′ is no longer schedulable. Based on this assumption, some
e′′i in Γ′′ need to be decreased in order to make Γ′′ schedulable.
Let Γ′′′ denote the new schedulable task set, then UΓ′′′ < UΓ.
Therefore, for a task set Γ with Pmin 6= P ∗, we can always find
a task set Γ′′′ that fully utilizes R with UΓ′′′ < UΓ. Moreover,
as P ′′′min = P ′′min = P ∗, we can then come to our conclusion
that P ∗ is the minimal task period of the task set which fully
utilizes R and has the minimal utilization.

In the following part, we derive the value of P ∗ by
guaranteeing that the assumption is always true, i.e., Γ′′ is
not schedulable.

According to Lemma 3, Γ′′ is not schedulable indicates∑
τ ′′i ∈Γ′′

e′′i > sbf(P ∗)

which can be further transformed into∑
τ ′′i ∈Γ′′

e′′i = q ·
∑
τi∈Γ

ei = q · sbf(Pmin) > sbf(P ∗)

and then
sbf(P ∗)
P ∗

− sbf(Pmin)

Pmin
< 0 (20)

As shown in Fig. 5(b), Pmin can be represented as kπ+φ+δ
over δ ∈ [0, π−φ). To simplify the notation, we define function
F(δ) over δ ∈ [0, π − φ) as

F(δ) =
sbf(kπ + φ+ δ)

kπ + φ+ δ
=
aδ2/2 + (1 + aφ− aπ)δ + kθ

kπ + φ+ δ

With function F(δ), Eq.(20) becomes F(δ∗)−F(δ) < 0 where
δ∗ = P ∗ − (kπ + φ).

Now, we derive the value of δ∗ by the following condition:

∀δ ∈ [0, π − φ),F(δ∗) ≤ F(δ)

This can be done by solving the function F′(δ) = 0. If this
function has real number solution, we let λ denote the solution,
i.e.

λ = −a(φ+ kπ) + ((aφ+ akπ)2

− 2a((1 + aφ− aπ)(kπ + φ)− kθ)) 1
2

Since F′′(δ) > 0, we have:

δ∗ =


0, if λ ≤ 0

π − θ, if λ > π − θ
λ, otherwise

(21)

If F′(δ) = 0 has no solution, it indicates (1+aφ−aπ)(kπ+
φ)− kθ > 0, which guarantees F′(0) > 0. Therefore, F(δ) is
monotonically increasing over δ ∈ [0, π − φ). In this case,
we have δ∗ = 0. To simplify the expression, we let λ =
−a(φ+ kπ).

For both cases that F′(δ) = 0 has or has no solution, we
calculate δ∗ based on Eq.(21) as

δ∗ = max{min{λ, π − φ}, 0}



where

λ = −a(φ+ kπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Since F(δ∗) has the minimal value of function F(δ) over δ ∈
[0, π−φ), when P ∗ = δ∗+kπ+φ, Eq.(20) always holds, which
further assures the assumption that Γ′′ is not schedulable is
true. Hence, we come to our conclusion that P ∗ = δ∗+kπ+φ
is the minimal task period of the task set which fully utilizes
R and has the minimal utilization.

With Lemma 3 and Lemma 4, we derive the utilization
bound UBRM for a task set Γ under the RM scheduling policy
with the restrictions that the ratio between any two task periods
of Γ is less than 2.

Lemma 5. Given a P 2-resource R(f(t), φ, π) and a task set
Γ with minimal task period Pmin and task number n. Under
the restriction that the ratio between any two task periods of
Γ is less than 2, the utilization bound of the task set Γ on R
is:

UBRM(Pmin, a, π, φ)

=
θ

π
· n[

(
1 +

kπ + π
θmsf(φ+ λ, π, φ)

P ∗

)1/n

− 1]
(22)

where k =
⌊
Pmin
π

⌋
, P ∗ = kπ + φ + max{min{λ, π − φ}, 0}

and

λ = −a(φ+ kπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Proof. Without loss of generality, we assume that for the tasks
in Γ, P1 < P2 < ... < Pn. Under the condition that Γ is
schedulable and Γ fully utilizes R, let U∗Γ denote the least
schedulable utilization bound for Γ and let e∗1, e

∗
2, .., e

∗
n be the

execution times of the tasks τ1, τ2, ..., τn that determine U∗Γ.
Then, according to Lemma 3, the execution times e∗1, e

∗
2, ..., e

∗
n

is determined as follow:

e∗1 = sbf(P2)− sbf(P ∗), ..., e∗n−1 = sbf(Pn)− sbf(Pn−1)

Specially, e∗n = sbf(P1)− sbf(0)− (sbf(Pn)− sbf(P1)).
According to Lemma 4, to find the minimal value of U∗Γ, we

let P1 = P ∗ where P ∗ = kπ + φ+ max{min{λ, π − φ}, φ},
hence e∗n = kθ+ msf(φ+ λ, π, φ)− sbf(Pn) + sbf(P ∗). Then,
U∗Γ can be represented as:

U∗Γ =
e∗1
P ∗

+ ...+
e∗n−1

Pn−1
+ ...+

e∗n
Pn

=
sbf(P2)− sbf(P ∗)

P ∗
+ ...+

sbf(Pn)− sbf(Pn−1)

Pn−1

+
kθ + msf(φ+ λ, π, φ)− sbf(Pn) + sbf(P ∗)

Pn

(23)

Furthermore, we replace sbf(t) by lsbf(t) and rewrite
Eq.(23) as follows:

U∗Γ =
lsbf(P2)− lsbf(P ∗)

P ∗
+ ...+

lsbf(Pn)− lsbf(Pn−1)

Pn−1

+
(lsbf(P ∗)− lsbf(Pn)) + kθ + msf(φ+ λ, π, φ)

Pn

=
θ

π
(
P2

P ∗
+ ...+

Pn
Pn−1

+
kπ + π

θmsf(φ+ λ, π, φ) + P ∗

Pn
− n)

(24)

Then, we calculate the extreme value of U∗Γ by setting the
first derivative of U∗Γ with respect to each Pis equal to zero
and by solving the resultant difference equations:

∂U∗Γ/∂Pi =
P 2
i − Pi−1 ∗ Pi+1

Pi−1 · P 2
i

= 0, i ∈ [2, n] (25)

Since the second partial derivative is always larger than zero,
the solution of Eq. (25) makes U∗Γ minimal.

In the next step, we adopt the definition Pn+1 = (kπ +
π
θmsf(φ + λ, π, φ) + P ∗) for convenience. Then, Eq.(25)
implies that ∀i ∈ [2, n], Pi

Pi−1
= Pi+1

Pi
which means the

sequence {P ∗, P2, ..., Pn} is a geometric sequence. Therefore,
the solution for Eq.(25) is

Pi = P ∗ ∗
(

1 +
kπ + π

θmsf(φ+ λ, π, φ)

P ∗

)− i−1
n

(26)

With the solutions of Pis for U∗Γ, we can then derive
UBRM(Pmin, a, π, φ) from Eq.(24) as:

UBRM(Pmin, n, a, π, φ)

=
θ

π
· n[

(
1 +

kπ + π
θmsf(φ+ λ, π, φ)

P ∗

)1/n

− 1]
(27)

In Lemma 5, the restriction that the largest ratio between
task period is less than 2 can be removed through the method
introduced in the proof of Theorem 5 in [1]. Therefore, we
have the closed form of the utilization bound in Theorem 5.

VII. SIMULATION ANALYSIS

Section V and VI give the analytical utilization bound for
real-time task sets on a P 2-resource under EDF and RM
scheduling policies, respectively. In this section, we further
study their tightnesses and the impacts of different factors on
them through simulations.

A. Bound Tightness

Both UBEDF and UBRM are sufficient schedulability bounds
of periodic task sets on P 2-resources. Therefore, it is possible
that a task set with utilization higher than the bound is still
schedulable. If a utilization bound is too conservative, many
schedulable task sets will be measured as un-schedulable and
thus the practical value of the utilization bound is low. To



evaluate how conservative a bound is, we define an evaluatioin
criteria, Tightness, as Tightness = Nsame/Ntotal, where Ntotal is
the total number of task sets that are tested and Nsame is the
number of task sets of which the schedulability determined
by the utilization bound is the same as the schedulability
determined by the corresponding scheduling policy.

In the following experiments, we measure the tightnesses
of both UBEDF and UBRM with different resource degradation
rate a and task set utilization UΓ. We use the UUnifast
algorithm [36] to randomly generate 1000 task sets with
utilizations ranging from 0.1 to 1.0. Each task set contains
4 tasks with periods ranging from 50 to 100. For the P 2-
resource, we set its rejuvenation cost φ = 50. As aging
progress is slow [34], we set a = 10−4 and a = 10−5 for
the two experiments, respectively, and set rejuvenation period
π = 1000.

(a) UBEDF (b) UBRM

Fig. 6. Tightness of the utilization bounds with different UΓ and a values

As shown in the Fig. 6, with UΓ increasing from 0.1 to
1.0, the tightnesses of both UBEDF and UBRM share a similar
changing pattern. For example, in the case of a = 10−4 under
EDF, before UΓ increases to 0.4, the tightness of UBEDF stays
at one, which means the schedulability determined by the
bound is the same as the schedulability determined by the EDF
policy for all of the 1000 task sets. When 0.4 ≤ UΓ < 0.8, the
tightness of UBEDF decreases first and then increases to one
again. When UΓ > 0.8, the tightness again stays at one. One
possible explanation of this pattern is that when UΓ is low,
the utilization bounds are relatively high, hence most of the
task sets are determined as schedulable by both bound and
scheduling policy. On the contrary, when UΓ is sufficiently
high, most of the task sets are determined as un-schedulable
by both bound and scheduling policy. Therefore, in both cases,
the tightnesses are high. However, if UΓ is in a certain range,
such as [0.4, 0.8] for the case a = 0.4 under EDF policy, a
schedulable task set is more likely to be determined as un-
schedulable. Therefore, when UΓ is not sufficiently low or
high, the tightness is relatively low.

Another interesting observation is that, when a value in-
creases, both UBEDF and UBRM becomes tighter. In addition,
UBRM is tighter than UBEDF in the main trend.

Next, we evaluate the tightnesses of the both bounds with
different π values. We use the same configuration of task set
in the previous experiment but set UΓ = 0.5 and performance

degradation rate a = 10−5. We then measure the tightnesses
for both UBEDF and UBRM with different π values ranging
from 200 to 1500. As are depicted in Fig. 7, when π value
increases, the tightnesses of both UBEDF and UBRM decrease
in general.

(a) UBEDF (b) UBRM

Fig. 7. Tightness of the utilization bounds with different π values

The theoretical analysis of the bound’s tightness is beyond
the scope of this paper, we will continue analyzing the
phenomenons illustrated above in our future work.

B. Impacts of π and a values on the utilization bounds

As aforementioned, UBEDF and UBRM are determined by
multiple factors. The impact of a factor can be evaluated by
calculating the first derivative of of the factor in UBEDF and
UBRM formula. However, for factor a and π, the calculation
of their first derivatives are complicated, hence we evaluate
their impacts on both bounds by simulations instead.

(a) UBEDF (b) UBRM

Fig. 8. Impact of a and π

We set φ = 50, Pmin = 100, n = 4 and calculate UBEDF
and UBRM under different π and a values. As shown in Fig. 8,
both bounds decrease when a increases, which matches the
intuition that resources with faster performance degradation
can only support task sets with lower utilizations.

In addition, as π increases, both utilization bounds show
the pattern of growing up first, reaching its maximum and
then decreasing. This observation raises a question that under
what π value, the utilization bound reaches its maximum.
For a P 2-resource, changing the performance degradation rate
or rejuvenation cost is difficult, if not impossible, since they
are determined by the software and hardware infrastructure.
However, the rejuvenation period is configurable. Therefore,
how to determine the rejuvenation period π is critical to the



performance of a P 2-resource in a real-time system. Our future
research will focus on how to determine the rejuvenation pe-
riod to maximize the utilization bound for a P 2-resource under
both EDF and RM policies.

VIII. CONCLUSION

In this paper, we have three major contributions: 1) Defined
the P 2-resource model and provided its supply bound analysis;
2) provided the closed form of the utilization bounds for a
task set on a P 2-resource under both EDF and RM scheduling
policies, respectively; and 3) studied the tightnesses of the two
utilization bounds and the impacts of different factors on the
two bounds as well by simulations.

In order to simplify the study, we assume the performance
degradation function of a P 2-resource is linear, which is
not always held in the real world systems. In our future
works, we will remove this assumption and study the P 2-
resources with non-linear performance degradation functions.
Meanwhile, as we mentioned before, we will theoretically
analyze the tightnesses of both bounds. Also, we will study
the scenario that during the resource rejuvenation, instead of
stoping providing service, the resource is still available to the
tasks but in the minimum performance.
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