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Abstract—System reliability has always been a challenging
issue for many systems. In order to achieve high reliability,
redundancy and voting schemes are often used to tolerate unin-
tentional component failures. For unintentional failures caused
by, for instance, normal wear-outs, hardware failures, or software
bugs, etc., adding more redundancies often improves a system’s
reliability. However, when attack-caused failures exist, the num-
ber of redundant components and the number of participating
voting entities may not be positively proportional to system
reliability. In this paper, we study system reliability and system
defense strategies when the system is under rational attacks.
In particular, we analyze how defense and attack strategies
may impact system reliability when both the defender and
attacker are given a fixed amount of resources that can only be
used for adding camouflaging components or enhancing existing
components’ cyber protection by defenders, or selecting a subset
of components to attack by attackers, respectively. We also
present an algorithm to decide the optimal defense strategy in
fighting against rational attacks.

Index Terms—System Reliability, Attacker-defender Problem,
Voting Strategy, Resource Allocation.

I. INTRODUCTION

RELIABILITY represents a system’s ability to work cor-
rectly and continuously [1]. This property is critical for

many systems [2]. Unfortunately, the reliability of individual
components (a component can be hardware, software, or a
composition of hardware and software that work together to
perform a task) of a given system is rarely one [3].

To improve system reliability in the presence of possible
component failures, redundancy and voting schemes are often
used to tolerate natural-caused component failures. Generally
speaking, when the reliability of a single component (replica)
is high, the more redundancies that are added to the system, the
more reliable the system behaves [4], [5]. However, when the
system is under intentional cyber attacks, voting components
may be compromised 1 by the attacks, causing the system to
produce incorrect results. In fact, when both the reliability of
components and the possibility of components being compro-
mised are taken into considerations, the number of components
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1By a component being compromised, we mean that the component’s
reliability is significantly decreased. For analysis simplicity, we assume it
decreases to 0.

that participate in a voting process has significant impact on
the performance of the voting algorithms, i.e., the reliability
of the system [3]. We use an example to explain the point.

Example 1: Assume a system consists of nine replicas that
provide the same functionality, but with different implementa-
tions. The reliability of each replica is 0.90. If only five out of
the nine replicas are used in deciding the final result through
a majority voting, the system reliability is

P =

Nv∑
j=dNv+1
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)
pj(1− p)Nv−j (1)

=

5∑
j=3

(
5

j

)
0.9j(1− 0.9)5−j = 0.9914

where Nv is the number of voting components and p is the
component’s reliability.

Fig. 1 depicts the relationship between the system reliability
and the number of voting components. As shown in Fig. 1,
the more voters used, the higher the system reliability. The
maximum reliability that the system can achieve is when all
nine available components participate in the voting process
(i.e., when Nv = 9), which is 0.9991.

Fig. 1. The relationship between system reliability and the number of voting
components (p = 0.90)

However, if the system is under attack, its components may
be compromised. Under such a scenario, it is no longer the
case that the more voters the system has, the more reliable the
system is. As an example, assume five out of the nine com-
ponents are compromised. Under this case, if we still choose
all nine components to vote, the reliability of the system is 0
because the majority of the voters are compromised. However,
if we choose a single component as a voting component, the
reliability of the system is 4

9 × 0.90 = 0.40, which is better
than the case where all nine components are used. �
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The example shows that in the presence of cyber attacks,
system reliability not only depends on the level of redundancy,
but it is also affected by the number of components in the vot-
ing process and whether these components are compromised.

In order to reduce the probability of a system being com-
promised, we have to increase the difficulty for an attacker
to launch successful attacks if such attacks cannot be fully
prevented. One way to increase the difficulty of a successful
attack is to enhance the cyber protection of existing system
components. Another solution is to decrease the probability
that an attacker would strike the system’s voting components.

Our earlier work [6] presented an information hiding tech-
nique to avert attackers from quickly identifying the difference
between critical and non-critical components. In addition,
a defender can dynamically select different sets of voting
components, and hence make it more difficult for attackers
to quickly determine the roles of different components in the
system. In this paper, we assume attackers cannot distinguish
the differences among components, hence adding camouflag-
ing components, such as installing honeypots [7], decreases the
probability of a voting component being attacked. For easy
discussion, we assume that enhancing component protection
and adding camouflaging components are the two approaches
a defender is to use with the available resources. However,
the technique presented in the paper is not limited to two
defending approaches.

Based on Levitin et al. [8], [9], [10], [11], it is known
that between a defender and an attacker, the one who invests
more resources on a component wins that component (i.e.,
the component survives the attack, or is compromised by the
attack). We revisit Example 1 below.

Example 2 (Example 1 Revisited): Assume the number of
components and their reliability are the same as given in
Example 1, both the attacker and defender are given 18 units of
resources, and the cost for creating a camouflaging component
is 2 units of resources. In addition, we assume the attack
is random, but the attacker can make rational decisions in
selecting the number of components to attack. By rational, we
mean the attacker can always take the most favorable strategy.

Assume the attacker chooses six components to attack
and evenly distributes his/her resources on the selected com-
ponents; while the defender allocates his/her resources to
protect all nine components which all participate in the voting
process. In this case, the defender allocates 18/9 = 2 units
of resources to protect each component, while the attacker
allocates 18/6 = 3 units of resources on each of the selected
components which are more than what the defender has put.
Therefore, based on [8], [9], [10], [11], all six components
being attacked are compromised. The majority voting from
the nine components results in 0 reliability.

However, suppose the attacker’s strategy remains the same,
but the defender changes his/her strategy to create three
camouflaging components, and the remaining resources are
allocated to protect three components that are chosen as
voters. In this case, as all three protected components have
(18 − 2 × 3)/3 = 4 units of defense resources, they survive
the attacks. As these protected components are the only voting
components, according to (1), the system reliability is 0.9720.

On the other hand, if the defender keeps the winning
strategy, but the attacker changes his/her strategy to attack only
four components, the system reliability reduces to 0.6598. The
detailed procedure of calculating the system reliability for this
scenario is discussed in Section IV. �

From this example, we can see that the best strategy for
the defender depends on how the attacker allocates his/her
resources; similarly, the best strategy for the attacker also
depends on how the defender allocates his/her resources and
how many components are chosen to vote.

The main contributions of the paper are: (1) formal analysis
of the relationship between attack and defense strategy, and
how they affect system reliability, (2) development of an
algorithm to determine the optimal defense strategy against
rational attacks, and (3) an experimental study of how the
defense and attack resources impact the defender’s strategy.

The rest of the paper is organized as follows. Section II
discusses related work. In Section III, we first present the
system model and list the assumptions this paper is built
upon. Based on the model and the assumptions, we formulate
the problem of improving system reliability against rational
attacks under given resources. In Section IV, we analyze
system reliability under given defense and attack strategies.
Section V provides an algorithm to determine the optimal
defense strategy against rational attacks. The experimental
results are shown and discussed in Section VI. Finally, we
point out future work in Section VII.

II. RELATED WORK

How to improve system reliability in the presence of attacks
has been intensely studied from different perspectives. For
instance, Bier et al. have studied series and parallel systems
and showed that the optimal resource allocation for defenders
not only depends on the structure of the system and the cost-
effectiveness of component protection investments, but also
on the adversary’s goals and constraints [12], [13]. Yalaoui et.
al. have considered redundant components in series systems
and proposed a dynamic programming method to calculate the
minimum cost required for a system to satisfy the minimum
reliability requirement [14].

Levitin and Hausken have done substantial work in the area
of system reliability and resource allocations. In particular,
they consider series and parallel systems, series systems of
parallel subsystems, and parallel systems of series subsys-
tems, and analyze system reliability when systems have or
do not have budget constraints in [15], [16], [17], [18].
They further analyze how to allocate resources between de-
ploying camouflaging components and enhancing component
protection when only one component needs to be protected
against attacks [8]. In [10], the approaches of protection and
redundancy are provided to reduce the expected damages
caused by attacks. The vulnerability of each system element is
determined by an attacker-defender contest success function,
and the expected damage caused by the attack is evaluated as
the system’s unsupplied demand. While in [9], they propose
three approaches to minimize system damage when both the
defender and attacker have limited resources, and illustrate
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how both the defender and attacker choose their strategies
when the contest intensity changes.

The main difference between the work presented in the
paper and those discussed is that, in our work, the reliability
of the system does not depend on the system’s structure nor on
the number of uncompromised system components, but instead
it is decided by a nonempty subset of the components in a
system that form the voting components. This is in contrast
to the work discussed above where the system reliability
either depends on the system structure or the amount of
uncompromised components.

In [19], Hardekopf et al. propose a decentralized voting
algorithm that improves system dependability and protects the
system from faults and hostile attacks. Tong et al. [20] show
how to choose optimal weight assignments for the majority
voting strategy in the system and also propose new effective
vote assignment algorithms which aim to maximize the sys-
tem reliability. Davcev proposes a dynamic weighted voting
scheme for consistency and recovery control of replicated
files in distributed systems [21]. Additional weighted voting
schemes are discussed in [22], [23], [24].

There are two differences between our work and those
discussed above. First, in our system model, a voting scheme
as outlined in [3] is employed. However, different from [3],
we extend Random Troika to encompass, if needed, up to
n components to form the voters. Second, the work in [19],
[20], [21] considers the performance of the algorithm when
the number of system components is fixed; while in this paper,
the number of composing components can be changed under
different resource allocation strategies, which may lead to a
change in the voting strategy to achieve a higher reliability.

In [25], Vanderbei presented a Linear Programming ap-
proach to solving the two-person zero-sum game problem [26].
However, this approach cannot be applied to solve our
attacker-defender problem. This is because his approach as-
sumes the game will be played multiple times, and it allows the
probability of strategy selection to be any real number between
0 and 1. For example, suppose a player has 3 strategies, the
probability of selecting these three strategies is 0.3, 0.3, and
0.4, respectively, and game is played n times. In these n times,
strategy 1, strategy 2, and strategy 3 are chosen 0.3n, 0.3n, and
0.4n times, respectively. The order for selecting the strategies
does not make a difference. For the attacker-defender problem
this paper addresses, the game can only be played once, and
we must determine which strategy should be chosen.

Our earlier work focused on using an information hiding
approach to prevent the attackers from quickly identifying the
location of critical components in the system [6], deciding
optimal resource allocation for improving system reliability
under random attack [27], [28], and determining a voting
strategy for a set of clusters when they are under rational
attacks [29]. The current work differs from the previous work
in two aspects. First, the system models are different. In
this paper, the system reliability depends on the reliability
of a set of selected voting components and whether they
are compromised or not, while in [27] and [28], the system
reliability is the probability that all critical components survive
the attacks, and [29] aims to maximize the overall reliability of

a set of clusters rather than an individual system. Second, the
protection approaches are different. The previous work either
considers the voting mechanism or protection approaches (i.e.,
creating camouflaging components, or enhancing component
protection, etc.), while the work presented in this paper
considers a more comprehensive approach that integrates the
voting mechanism with the protection approaches.

III. ASSUMPTIONS AND PROBLEM DEFINITION

Before presenting the formal description of the system
model and its assumptions, we first introduce the notations
to be used throughout the paper.

Ns number of system components
Nc number of camouflaging components
Np number of protected components
Nv number of voting components
Na number of attacked components
Nv

a number of attacked voting components
Nf

v number of compromised voting components
Npv

a number of attacked protected voting components

Rd total defense resources
Ra total attack resources

rd amount of defense resources on each protected
component

ra amount of attack resources on each attacked com-
ponent

C cost for creating a camouflaging component

p component’s reliability
P system reliability
M reliability matrix
−→
X defense strategy selection vector
−→
Y attack strategy selection vector

Sd number of defense strategies
Sa number of attack strategies

A. System Model and Assumptions

We assume a system consists of Ns diverse replicas, and
the reliability of each replicated component is p. The system’s
result is decided through a majority voting among a subset of
these components, called voting components or voters. We use
Nv to denote the number of voting components, where Nv ≤
Ns. The system reliability P is defined as the probability that
a correct result is obtained through a majority voting among
voters.

As we assume replicas have the same reliability, therefore,
if the sizes of randomly selected voting groups are the same,
the reliability of voting results is the same. For instance, the
two different selections of five voting components shown in
Fig. 2 produce the same system reliability.

Assume a system defender is given a fixed amount of de-
fense resources, Rd, which can be used to create camouflaging
components or to enhance component cyber protection, and
the cost for creating a camouflaging component is C, and Nc

camouflaging components are created, where Nc × C ≤ Rd.
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Fig. 2. Different selections of voting components

The remaining defense resources (Rd−Nc×C) are evenly dis-
tributed to enhance the cyber protection of a subset of system
components, called protected components Np, 0 ≤ Np ≤ Ns.
Hence, the resources rd used on each protected component is
given by (2).

rd =

{ Rd−Nc×C
Np

if Np > 0

0 if Np = 0
(2)

As the attacker cannot distinguish the differences between
unprotected, protected, camouflaging, or voting components,
the selection of components to attack is random. However, the
attacker can intelligently decide the number of components to
attack. Assume the total amount of resources that an attacker
has is Ra and they are evenly distributed to attack a subset of
components Na (1 ≤ Na ≤ Ns+Nc), the amount of resources
allocated to each attacked component is ra

ra =
Ra

Na
(3)

Based on Levitin et al. [8], [9], [10], [11], the attack success
probability on a single component can be modeled by a contest
success function given in (4), where ra and rd are the amount
of resources invested by contesters, i.e., an attacker and a
defender, respectively, and Pa is the attack success probability.

Pa =
(ra)

m

(rd)m + (ra)m
(4)

When the contest intensity indicator m = +∞, the attack
success probability function (4) reduces to “winner-takes-all”,
i.e., whoever invests more effort wins the game. For reference
purpose, we restate the conclusion from [8], [9], [10], [11]
as an axiom.

Axiom 1: Assume the amount of resources invested by an
attacker and a defender on a component is ra and rd, respec-
tively. If ra > rd, the attacker compromises the component;
otherwise, the component survives the attack. �

When fighting against rational attacks, the system defender
cannot guarantee that the attacker does not know his/her
resource information and defense strategies. We consider the
defender assumes the worst-case scenario [30], i.e., the at-
tacker knows the defender’s resource information and defense
strategies.

For the defender’s knowledge of the attacker’s resources, we
again assume a worst-case where the attacker, with complete
knowledge of the defender’s resources and strategies, can fully

exploit any vulnerability that exists. However, the attacker
is not all-powerful because the defender is assumed to be
a knowledgeable practitioner of information assurance prin-
ciples. An upper bound on attack resources (i.e., Ra) would
be a combination of favorable-for-the-attacker values of the
following: requisite attacker skill-level; time budget for the
attack; and the computation and communication expenditures
for an attack. This upper bound, while optimistic for the
attacker, is pessimistic for the defender.

In summary, we make the following assumptions regarding
the defender and attacker’s knowledge, which are similar to
those made in [12], [13]:

Public information shared by the defender and the attacker:
1) the amount of resources that the defender and the

attacker have, i.e., the value of Rd and Ra.
2) the cost for creating a camouflaging component,

i.e., the value of C.
3) the number of system components and camouflag-

ing components, i.e., Ns and Nc.
4) the reliability of a system component without

protection hardening, i.e., the value of p.
Private information:

1) the defender does not know which components are
currently being attacked.

2) the attacker cannot differentiate unprotected, pro-
tected, camouflaging, and voting components.

3) the attacker does not know which components are
voting components.

Since the attacker randomly selects a subset of components
to attack, for each component, the probability of being attacked
is the same. Therefore, if the number of voting components
is no larger than the number of protected components, it
is obvious, from the defender’s perspective, that the voting
components should only be chosen from the protected set.

Based on the above discussion, we formulate the problem of
improving system reliability against rational attacks as below:

Problem 1: Given a system with Ns redundancy and Rd

defense resources, where the cost for creating a camouflaging
component is C, determine the number of camouflaging,
protected, and voting components, i.e., Nc, Np, and Nv ,
respectively, so that the system reliability is maximized in
the presence of a rational attacker who has Ra resources
and makes rational decisions in choosing the number of
components, Na, to attack so that the system reliability is
minimized. More precisely, given Ns, Rd, C, and Ra, decide
Nc, Np, Nv , and Na, such that

max
{Nc,Np,Nv}

min
Na

P (Nc, Np, Nv, Na) (5)

where P (Nc, Np, Nv, Na) is the system reliability under the
given values. �

The next two sections will discuss how the problem is
addressed.

IV. SYSTEM RELIABILITY UNDER GIVEN DEFENSE AND
ATTACK STRATEGIES

Assume the defender has made the decisions on the value of
Nc, Np (0 ≤ Np ≤ Ns), Nv (1 ≤ Nv ≤ Ns) and the selections
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of protected and voting components; also the attacker has
made his/her decision on the value of Na (1 ≤ Na ≤ Ns+Nc)
and the selection of Na components.

Clearly, if an attack strikes on a camouflaging component
or a system component that does not participate in the voting
process, the attack has no impact on the reliability of the
system. Hence, we only need to consider the attacks that
target the voting components. Assume Nv

a out of Na attacked
components are voting components, the range of Nv

a is

max{0, Na − (Ns +Nc −Nv)} ≤ Nv
a ≤ min{Na, Nv} (6)

The probability, δ(Nv
a , Na), that the attacker targets exactly

Nv
a voting components is

δ(Nv
a , Na) =

(
Nv

Nv
a

)(
Ns+Nc−Nv

Na−Nv
a

)(
Ns+Nc

Na

) (7)

In order to obtain the system reliability, we need to know
the number of compromised voting components (Nf

v ) in a
voting process. From Section III, we know the amount of
resources a defender and an attacker spend on a voting
component, i.e., formula (2) and (3), respectively. Based on
Axiom 1, if ra > rd, each voting component being attacked
is compromised, i.e., Nf

v = Nv
a ; or none of the protected

voting components are compromised, but unprotected voting
components are, that is Nf

v = Nv
a − Npv

a , where Nv
a is the

number of attacked voting components, and Npv
a is the number

of attacked protected voting components. In other words, we
have

Nf
v =

 Nv
a if ra > rd

Nv
a −Npv

a if Nv > Np

0 otherwise
(8)

Let ϕ(Nf
v , Nv) denote the probability that a correct result

is obtained through a majority voting when Nf
v components

are compromised, and we have

ϕ(Nf
v , Nv) =

Nv−Nf
v∑

j=dNv+1
2
e

(
Nv −Nf

v

j

)
pj(1− p)Nv−Nf

v−j (9)

According to the system model, for a defender, if Nv ≤ Np,
i.e., the number of voting components is smaller than the
number of protected components, there will be no unprotected
components participating in the voting, i.e., Npv

a = Nv
a . How-

ever, if Nv > Np, not all voting components are protected,
and the range of Npv

a is

max{0, Np +Nv
a −Nv} ≤ Npv

a ≤ min{Np, N
v
a } (10)

The probability, θ(Npv
a , Nv

a ), that Npv
a out of Nv

a attacked
voting components are protected components is given by (11).

θ(Npv
a , Nv

a ) =

( Np

Npv
a

)( Nv−Np

Nv
a−N

pv
a

)(
Nv

Nv
a

) (11)

As the number of attacked voting components Nv
a varies

from max{0, Na − (Ns + Nc − Nv)} to min{Na, Nv},
and if Nv > Np, the number of protected components
Npv

a in the Nv
a attacked voting components ranges from

max{0, Np + Nv
a − Nv} to min{Np, N

v
a }, otherwise it

becomes Nv
a , otherwise. Therefore, the system reliability is

P (Nc, Np, Nv, Na) =
min{Na,Nv}∑

Nv
a=max{0,lb}

δ(Nv
a , Na)× ϕ(Nv

a , Nv) if ra > rd

min{Na,Nv}∑
Nv

a=max{0,lb}
δ(Nv

a , Na)× θ′(Npv
a , Nv

a )× ϕ(N
f
v , Nv) otherwise

(12)

where lb = Na −Ns −Nc +Nv , and

θ′(Npv
a , Nv

a ) =
min{Np,N

v
a}∑

N
pv
a =max{0,Np+Nv

a−Nv}
θ(Npv

a , Nv
a ) if Nv > Np

1 otherwise
(13)

We use an example to illustrate the steps in deriving system
reliability.

Example 3: Consider Example 2 presented in Section I,
where the defender creates Nc = 3 camouflaging compo-
nents, allocates the remaining resources to protect Np = 3
components, and chooses these three protected components
as voters, that is Nv = 3; whereas the attacker randomly
selects Na = 4 components to attack. Therefore, the amount
of attack resources ra on each attacked component is ra =
Ra/Na = 18/4 = 4.5, and the amount of defense resources
rd on each protected component is rd = (Rd−Nc×C)/Np =
(18− 3× 2)/3 = 4.

Based on the information and (6), the number of the
attacked voting components Nv

a ranges from 0 to 3. The prob-
ability that the attacker attacks exactly Nv

a voting components,
δ(Nv

a , 4), is

δ(Nv
a , 4) =

(
3

Nv
a

)(
9

4−Nv
a

)(
12
4

) (14)

In addition, as ra > rd, from (8), we know Nf
v = Nv

a .
The probability that a correct result is obtained when Nf

v

components are compromised, ϕ(Nf
v , 3), is

ϕ(Nf
v , 3) =

3−Nf
v∑

j=2

(
3−Nf

v

j

)
(0.9)j(0.1)3−N

f
v−j (15)

Therefore, based on (12), the system reliability is

P (3, 3, 3, 4) =

3∑
Nv

a=0

( 3
Nv

a

)( 9
4−Nv

a

)
(12
4

) 3−Nv
a∑

j=2

(3−Nv
a

j

)
(0.9)j(0.1)3−Nv

a−j

= 0.6598

�
We have shown how system reliability is derived once Rd,

Ra, C, Nc, Np, Nv , and Na are given. In the next section, we
will discuss how to make the choices with respect to Nc, Np,
and Nv so that the system reliability is maximized under the
worst-case scenario, i.e., under the scenario where it is more
favorable to an attacker.
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V. ALGORITHMS TO DETERMINE DEFENSE STRATEGY
AGAINST RATIONAL ATTACKS

For a fixed number of camouflaging components Nc (0 ≤
Nc ≤ bRd/Cc), a defender can vary the value of Np and Nv .
As Np ranges from 0 to Ns, and Nv from 1 to Ns, therefore,
the total number of strategies the defender can choose is Sd =
(Ns + 1)Ns. We arrange the possible defense strategies in a
lexicographical order. In particular, for a given Nc, the ith
(1 ≤ i ≤ Sd) defense strategy corresponds to when Np =
b(i− 1)/Nsc and Nv = i−Ns × di/Nse+Ns.

On the other hand, for the attacker, the number of attacked
components ranges from 1 to (Ns +Nc). Therefore, the total
number of possible attack strategies is Sa = Ns+Nc, and the
jth (1 ≤ j ≤ Sa) attack strategy is Na = j.

When both the defense strategy (Nc, Np, Nv) and the attack
strategy (Na) are determined, the system reliability can be
calculated by using (12). Therefore, we define a matrix M =
(ri,j)Sd×Sa to record the system reliability under each possible
defense and attack strategy, where ri,j refers to the system
reliability when the defender chooses the ith defense strategy
and the attacker chooses the jth attack strategy. In other words,
ri,j = P (Nc, b(i− 1)/Nsc, i−Ns × di/Nse+Ns, j).

Clearly, for each defense strategy, depending on which
attack strategy is taken by an attacker, the system reliability
can vary. We introduce two vectors, i.e.,

−→
X = [x1, . . . , xSd

]T

and
−→
Y = [y1, . . . , ySa

]T , where xi ∈ {0, 1} and yj ∈ {0, 1}
denote whether the ith defense strategy is chosen by a defender
and the jth attack strategy is chosen by an attacker, respec-
tively. Since a defender and an attacker can choose only one
strategy at a time, we have

∑Sd

i=1 xi = 1, and
∑Sa

j=1 yj = 1.

Based on the defense strategy selection vector
−→
X and the

attack strategy selection vector
−→
Y , the system reliability is

given by (16).

P =
−→
XTM

−→
Y =

Sd∑
i=1

Sa∑
j=1

xiri,jyj (16)

The objective of the defender is to maximize the system
reliability under the worst-case scenario, i.e., if the defender’s
strategy is determined, an attacker chooses a strategy that
minimizes the system reliability. In other words, the defender’s
objective is to maximize Pmin, where

Pmin = min
1≤j≤Sa

Sd∑
i=1

xiri,j (17)

Algorithm 1 gives the procedure of finding the system’s
maximized minimum reliability when the number of camou-
flaging components Nc is fixed.

A brief explanation of Algorithm 1: from Line 4 to Line
8, we obtain the system’s minimum reliability under all of
the possible attack strategies when the defender chooses the
ith (1 ≤ i ≤ Sd) defense strategy. From Line 9 to Line 12,
the defender chooses the strategy under which the system’s
minimum reliability is maximized. Finally, we output the
system’s maximized minimum reliability Pmaxmin and the
corresponding defender’s strategy vector

−→
X (Line 14).

Algorithm 1 FINDING THE SYSTEM’S MAXIMIZED MINI-
MUM RELIABILITY WHEN Nc IS FIXED

Input: A reliability matrix M = (ri,j)Sa×Sd
.

Output: System’s maximized minimum reliability Pmaxmin,
and defense strategy vector

−→
X .

1: Pmaxmin ← 0;
−→
X ← 0;

2: for i← 1 to Sd do
3: Pmin ← 1
4: for j ← 1 to Sa do
5: if Pmin > ri,j then
6: Pmin ← ri,j
7: end if
8: end for
9: if Pmaxmin < Pmin then

10: Pmaxmin ← Pmin

11: Set xi to 1, and the rest to 0.
12: end if
13: end for
14: return Pmaxmin,

−→
X

Theorem 1: Algorithm 1 obtains the system’s maximized
minimum reliability under all of the possible attack strategies
when the number of camouflaging components is fixed. �

Proof: We prove the theorem by contradiction. If there exists
a higher value of the system’s maximized minimum reliability
under all possible attack strategies, the corresponding defense
strategy must be one of the Sd strategies. In Algorithm 1, we
compare the system’s minimum reliability under each defense
strategy and choose the largest one. Therefore, the assumption
does not hold. �

We use an example to illustrate how to use Algorithm 1 to
determine the system’s maximized minimum reliability when
the number of camouflaging components is fixed.

Example 4: Assume a system consists of Ns = 5 functional
components, and the reliability of the components is p = 0.95.
The defender and the attacker have Rd = 35 and Ra = 20
units of resources, respectively. The cost for creating a cam-
ouflaging component is C = 3 units of resources.

Suppose the defender creates two camouflaging compo-
nents, i.e., Nc = 2. Under this case, the total number of
defense strategies is Sd = (Ns + 1)Ns = 6 × 5 = 30, and
the total number of attack strategies is Sa = Ns + Nc = 7.
Matrix M = (ri,j)30×7 stores the system reliability under each
possible defense and attack strategy, where ri,j = P (2, b(i−
1)/5c, i− 5× di/5e+ 5, j).

Based on the given values, i.e., Ns, Ra, p, Rd, Nc, and C,
we follow the procedure shown in Algorithm 1 and obtain
x18 = 1 and Pmaxmin = 0.9541. Therefore, the optimal
defense strategy is the 18th strategy, i.e., i = 18, that is
Np = b(i − 1)/Nsc = b17/5c = 3, and Nv = i − Ns ×
di/Nse+Ns = 18− 20+ 5 = 3, and the system reliability is
P = 0.9541. �

The discussion we have so far is under the assumption
that the number of camouflaging components is fixed. Now,
we relax the constraint and let Nc vary from 0 to bRd/Cc.
Algorithm 2 shows the procedure of choosing Nc and the
(Np, Nv) pair that maximize system reliability.
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Algorithm 2 DECIDE THE FINAL DEFENSE STRATEGY UN-
DER GIVEN RESOURCES
Input: Number of system components Ns, defense resources

Rd, attack resources Ra, cost for creating a camouflaging
component C, and components’ reliability p.

Output: System’s maximum reliability Pmaximum, defense
strategy (Nc, Np, Nv).

1: Pmaximum ← −1;
−→
X final ← 0

2: Nc ← 0; Np ← 0; Nv ← 0;
3: for N ′c ← 0 to bRd/Cc do
4: Sd ← (Ns + 1)Ns; Sa = Ns +N ′c
5: Obtain reliability matrix M by using (12)
6: Apply Algorithm 1 to get Pmaxmin and

−→
X

7: if Pmaximum < Pmaxmin then
8: Pmaximum ← Pmaxmin

9:
−→
X final ←

−→
X ; Nc ← N ′c

10: end if
11: end for
12: i← Index V alue Is One(

−→
X final)

13: Np ← b(i− 1)/Nsc
14: Nv ← i−Ns × di/Nse+Ns

15: return Pmaximum, Nc, Np, Nv

A brief explanation of Algorithm 2: under each resource
allocation of camouflaging component creation (Line 3), we
first obtain the system’s maximized minimum reliability under
different resource allocations (from Line 4 to Line 6), and then
choose the largest among those as the final system reliability
(from Line 7 to Line 10). In Line 12, we obtain the index of the
element in

−→
X final whose value is equal to 1, and then based

on the index, we get the defender’s strategy Np and Nv (Line
13 and Line 14). Finally, we return the system’s maximum
reliability Pmaximum and the corresponding defense strategy
Nc, Np, and Nv (Line 15).

Theorem 2: Algorithm 2 obtains the system’s maximum
reliability under all possible attack strategies. �

Proof: We prove the theorem by contradiction. If we can
find a higher system reliability, it must exist in one of the
resource allocations of the camouflaging component creation.
Algorithm 2 compares the maximal reliability under each
resource allocation and chooses the largest among them.
Therefore, we cannot obtain a higher system reliability than
the one produced by Algorithm 2. �

Example 5 (Example 4 Revisited): In Example 4, the
maximum number of camouflaging components which can be
created is bRd/Cc+1 = b40/3c+1 = 14. Under each resource
allocation of camouflaging component creation, the system’s
maximal reliability and the corresponding number of protected
and voting components are shown in Table I. After comparing
the system’s maximal reliability under different resource allo-
cations, the maximum system reliability is P = 0.9860, and
the corresponding defense strategy is Nc = 0, Np = 4, and
Nv = 5. �

VI. SIMULATION RESULTS

We have implemented a simulator which follows the steps
in Algorithm 2 to investigate how the defense and attack

resources impact the defender’s strategy. In addition, we
compare the system reliabilities when the number of voting
components is fixed versus when it is optimally determined.

For the first set of experiments, we study how the defense
resources impact the defender’s strategy. In this experiment
setting, we assume that a system consists of seven replicas,
and the reliability of each replicated component is 0.95. The
amount of attack resources is 40 units, and the cost for creating
a camouflaging component is 3 units of resources. In other
words, we have Ra = 40, C = 3, p = 0.95, and Ns = 7. The
amount of defense resources Rd is increased from 10 to 110
units. Under each increase of defense resources, the defense
strategy is obtained by using the simulator which implements
Algorithm 2.

It is worth mentioning that there is no particular preference
when deciding the amount of attack resources. We set the
amount of attack resources to 40 units and the range of defense
resources from 10 to 110 units, so that we are able to see
how the defense strategy changes under different cases, i.e.,
the amount of defense resources is less than, equal to, and
greater than the amount of attack resources. In the second
set of experiments, we fix the defense resources and vary the
amount of attack resources from 10 to 110 units to further
investigate how the amount of attack resources impacts the
defense strategy.

Fig. 3 shows how the defense strategy (Nc, Np, and Nv) and
unreliability of the system (i.e., 1−P ) change as the amount
of available defense resources increases. The primary (left)
y-axis shows the optimal number of protected, camouflaging,
and voting components under a specific amount of defense re-
sources. The secondary (right) y-axis shows the corresponding
minimized maximum unreliability of the system. From Fig. 3,
we observe the following:

1) When the amount of defense resources is small, the
defender should allocate resources to protect a small set
of functional components (Line L2 in Fig. 3) and choose
these protected components to vote (Line L3 in Fig. 3).

2) As the amount of defense resources increases, the de-
fender should protect more components (Line L2 in
Fig. 3) and choose these as voting components as well
(Line L3 in Fig. 3).

3) All protected components should participate in the voting
(Line L2 and L3 in Fig. 3).

4) The unreliability of the system decreases, i.e., the sys-
tem’s reliability increases, as the amount of defense
resources increases. (Line L4 in Fig. 3).

5) When the amount of defense resources increases, the
defender should create more camouflaging components
(Line L1 in Fig. 3).

The reason for the first two observations lies in the fact
that when the amount of defense resources is small, allocating
all of the resources to protect a single voting component
maximizes the probability that the voting component survives
the attack. However, if the amount of defense resources is
large enough, i.e., the amount of protection resources on the
voting components can guarantee that the majority of the
voting components are not compromised by the attacker, it
is better to protect more components and also choose these
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TABLE I
THE MAXIMAL SYSTEM RELIABILITY UNDER EACH RESOURCE ALLOCATION

Rd = 40, Ra = 20, Ns = 5, C = 3
Nc 0 1 2 3 4 5 6 7 8 9 10 11 12 13
P 0.9860 0.9500 0.9541 0.9589 0.9524 0.9500 0.9500 0.9025 0.9025 0.8821 0.8867 0.8313 0.7265 0.0000
Np 4 1 3 3 4 1 1 2 2 1 1 1 1 1
Nv 5 1 3 3 5 1 1 3 3 1 1 1 1 1

Fig. 3. The relationship between defense resources, defender’s strategy, and
unreliability of the system when the amount of attack resources is 40 units

protected components as voters for lower unreliability of the
system.

As the system reliability not only depends on the number
of voting components but also on the probability of compo-
nents being compromised. Therefore, protecting non-voting
components does not contribute to the improvement of system
reliability. On the contrary, it reduces the amount of resources
that could be applied to the protection of voting components
and henceforth reduces the voting components’ probability to
survive an attack. Therefore, all protected components should
participate in the voting (observation three).

The explanation for the fourth observation is that when the
amount of defense resources increases, the probability that
a voting component is compromised decreases because more
camouflaging components can be created or more protection
resources are added to the voting components.

Although adding camouflaging components can lower the
probability that voting components are attacked, the benefit to
unreliability of the system decrease is not obvious because
of the existence of non-voting components in the system.
Therefore, when the amount of defense resources is small,
it is more appropriate to allocate the resources to component
protection. If the amount of defense resources is large enough,
we can create camouflaging components to further lower the
probability that voting components are attacked, therefore,
decreasing unreliability of the system (observation five). That
is why when the amount of defense resources is below 80 units
(except the case where Rd = 30), no camouflaging component
is created.

It is worth pointing out that when the amount of defense
resources is 30 units, the defender allocates resources to create
three camouflaging components, which is against our judg-
ment. However, the reason to create camouflaging components
is not because the benefit of creating camouflaging compo-
nents outweighs protecting voting components, but because

under the cases in which Rd = 30 and Ra = 40, we only
need 20 units resources to protect the single voting component,
therefore, the remaining defense resources are used to create
camouflaging components.

To be more specific, if the amount of attack resources
is 40 units and the amount of protection resources on the
single voting component is 20 units, the attacker must use
all available resources to attack a single component, because
if he/she attacks more than one component, according to
Axiom 1, none of the attacked voting components will be
compromised. As the attacker allocates 40 units of resources
to attack only one component, allocating 20 units or 30 units to
protect the voting component does not make a difference, i.e.,
once the voting component is attacked, it will be destroyed.
Therefore, the defender should allocate the remaining 30 -
20 = 10 units of resources to create b 103 c = 3 camouflaging
components to lower the attack probability of the voting
component.

In this experiment, the system reliability is evaluated under
the worst-case scenario. In other words, no matter what
strategy the attacker takes, the system reliability is no less than
the system’s maximized minimum reliability. Therefore, when
the attacker randomly selects his/her strategy, i.e., the attack
strategies have uniform probability, the system’s expected
reliability will be greater than or equal to the maximized
minimum reliability, and their difference is shown in Fig. 4
where the values of Nv , Np, and Nc are the same as in Fig. 3.

Fig. 4. Difference between system’s maximized minimum reliability and
expected reliability

From Fig. 4, we can see that the more defense resources the
defender has, the smaller the difference between the system’s
maximized minimum reliability and expected reliability. This
is because when the amount of defense resources is small, the
probability that the majority of the voting components survive
the random attacks is much larger than the probability under
the worst-case scenario. When the amount of defense resources
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increases, more resources are available to protect the voting
components, and the system’s maximized minimum reliability
increases accordingly. Therefore, the difference between the
system’s maximized minimum reliability and expected relia-
bility decreases.

For the second set of experiments, we analyze the effect of
the amount of attack resources on defender’s strategies and
system reliability. The experiment settings for C, p, and Ns

are the same as in the previous experiment, and the amount of
defense resources is 40 units. In other words, we have Rd =
40, C = 3, p = 0.95, and Ns = 7. The amount of attack
resources increases from 10 to 110 units.

For each Ra, we also use the simulator which implements
Algorithm 2 to decide the defender’s strategy. Similar to
Fig. 3, the primary y-axis of Fig. 5 shows the optimal number
of camouflaging, protected, and voting components under a
specific amount of attack resources, and the secondary y-axis
is the corresponding system reliability. From Fig. 5, it is easily
seen that when the amount of attack resources is small, i.e.,
Ra = 10, all of the system components are protected and
chosen to vote (Line L2 and L3 in Fig. 5). However, when
the amount of attack resources increases, i.e., Ra = 30, there
is only one component being protected in the hopes that the
voting component survives the attack (Line L2 and L3 in
Fig. 5).

The main reason for the strategy change is that when the
amount of attack resources is small, choosing more voting
components increases the system reliability, and at the same
time, we can guarantee that the majority of the voting com-
ponents are not compromised by the attacker. However, when
the amount of attack resources increases, the majority of the
voting components will be compromised by the attacker if we
evenly distribute the same defense resources to a large set of
voting components. Therefore, a better defense strategy would
be to invest the resources into a smaller group, improving their
probability of surviving the attack.

In addition, from Fig. 5, we can see that when the amount
of attack resources increases, the system reliability decreases
(Line L4 in Fig. 5). The reason for the system reliability
change is that when more attack resources are used, the prob-
ability that the voting components becoming compromised
increases accordingly.

Another observation from Fig. 5 is that when the amount
of attack resources increases from 50 units to 110 units,
the number of camouflaging components changes drastically
(Line L1 in Fig. 5). The reason for the change is similar
to the one illustrated in the first set of experiments, i.e.,
the defender creates camouflaging components not because
the effect of creating camouflaging components is better than
component protection, but because remaining resources exist
after component protection.

For example, when the amount of attack resources is 50
units, the protection resources on the only voting component
should be greater than or equal to 25 units, because in this case,
the attacker can only attack one component. If the attacker
attacks more than one component, the attack resources on
the attacked components is less than 25 units, and the voting
component will not be compromised. As the defender has 40

units of defense resources in total, and the minimum amount of
desired protection resources is 25 units, the defender will use
the remaining (40 - 25) = 15 units of resources to create 15

3 = 5
camouflaging components to lower the attack probability of
the voting component. Similar analysis applies in other cases
where the number of camouflaging components is nonzero.

Fig. 5. The relationship between attack resources, the defender’s strategy,
and system reliability when the amount of defense resources is 40 units

When the system is under random attacks, as shown in
Fig. 6 (where the values of Nv , Np, and Nc are the same
as in Fig. 5), the difference between the system’s maximized
minimum reliability and expected reliability grows when the
amount of attack resources increases, this is because when
the amount of attack resources increases, the probability that
the voting components are compromised under worst-case
scenario increases faster than the probability under random
attacks.

Fig. 6. Difference between the system’s maximized minimum reliability and
expected reliability

For the third set of experiments, we compare the system
reliability when the number of voting components is fixed
versus when it is optimally decided by the algorithm. More
precisely, we set Ra = 40, C = 3, p = 0.95, Ns = 7, and let
defense resources vary from 10 to 70 units. The value of Nv

is set to constant 1, 3, 5, and 7, or chosen by the Algorithm 2,
respectively.

Fig. 7 shows the system reliability under different numbers
of voting components. From Fig. 7 we can see that the
system reliability with a fixed number of voting components
is never greater than the case in which the number of voting
components is optimally decided.
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To be more specific, when the amount of defense resources
is below 55 units, the optimal number of voting components is
1, when the amount of defense resources increases to 60, 65,
and 70 units, the optimal number of voting components is 3,
5, and 7, respectively. This result validates our conjecture that
when the system is under attack, the number of components
that participate in a voting processing may not be positively
proportional to the reliability of the system.

Fig. 7. The system reliability under different numbers of voting components
when the amount of attack resources is 40 units

VII. CONCLUSION

Redundancy and voting schemes are often used to toler-
ate natural-caused component failures. In general, the more
reliable components that participate in a voting process, the
higher reliability the system can achieve. However, when a
system is under intentional cyber attacks, the system reliability
is not necessarily proportional to the number of redundancies
of voting components.

This paper has analyzed system reliability when both a
defender and an attacker are given a fixed amount of resources
and studied how their resource allocation strategies impact
system reliability. Based on the analysis, we have developed
an algorithm for system defenders to optimally allocate their
resources and decide the number of voting components so that
the system reliability is maximized even under the scenario
that is most favorable to attackers. The experimental results
show that when a defender has sparse resources compared to
what the attacker has, the defender should invest the resources
into protecting a fewer number of components and select
only the protected components for voting; in contrast, if
the resources are abundant, the defender should increase the
number of protected components and allow more components
to vote.

In our work, we only consider that components can be com-
promised while the communication channel for the voting pro-
tocol is reliable. However, in reality, communication channels
play an important role when it comes to the system reliability,
often times they are the target of attacks [31]. When network
reliability is taken into consideration, less communication in
reaching a consensus could imply higher reliability of the
consensus; on the other hand, fewer voting participants (less
communication) could result in lower reliability. It becomes
more complicated when intentional attacks exist. Hence, our
next step is to include the communication channel into the

system model and investigate how the communication channel
affects system reliability and defense strategy.
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