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Abstract—FermiCloud is a private cloud developed by the
Fermi National Accelerator Laboratory for scientific workflows.
The Cloud Bursting module of the FermiCloud enables the
FermiCloud, when more computational resources are needed, to
automatically launch virtual machines to available resources such
as public clouds. One of the main challenges in developing the
cloud bursting module is to decide when and where to launch
a VM so that all resources are most effectively and efficiently
utilized and the system performance is optimized.

However, based on FermiCloud’s system operational data, the
VM launching overhead is not a constant. It varies with physical
resource (CPU, memory, I/O device) utilization at the time when
a VM is launched. Hence, to make judicious decisions as to when
and where a VM should be launched, a VM launch overhead
reference model is needed. The paper is to develop a VM launch
overhead reference model based on operational data we have
obtained on FermiCloud and uses the reference model to guide
the cloud bursting process.

I. INTRODUCTION

Cloud technology has been benefiting general purpose
computing for quite some years. The pay-on-demand model
brought by cloud computing allows companies to avoid over
provision at its early project development stage. As the cloud
technology develops, many scientific research institutions have
migrated their research from traditional grid and distributed
computing platform to the cloud computing environment.
These research areas include life science [13], astronomy [15]
and earthquake research [10], to name a few.

One successful example of using cloud computing tech-
nology is the STAR project on Relativistic Heavy-Ion Collider
at the Brookhaven National Laboratory [1], [2]. The STAR
project studies the fundamental properties of nuclear matter
which only exist in a high-density state called a Quark Gluon
Plasma [1]. Because of resource shortage from the local grid
service, the STAR team started to collaborate with the Nimbus
team at Argonne National Laboratory to migrate its experiment
to a computer cloud. The Nimbus tools enable virtual machines
in private cloud to be deployed on Amazon EC2.

One of the advantages a computer cloud has over traditional
grid computing is that the resource utilization of the underlying
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infrastructure can be significantly improved by deploying dif-
ferent tasks on the same physical computer node. In addition,
computation power can also be dynamically allocated to tasks
when more resources are needed by the tasks. The other
benefit of using a computer cloud over a grid is that a cloud
has “unlimited“ resources – when the private cloud is fully
occupied, cloud bursting techniques can temporarily acquire
external resources from, for instance, public clouds to fulfill
the need.

Fermi National Accelerator Laboratory (Fermilab), as a
leading research institution in the high energy physics (HEP)
field, started to build a private computer cloud, the FermiCloud,
in 2010. The FermiCloud has successfully served the HEP
experiments since its establishment. The cloud bursting tool
vCluster [8] is developed to automatically allocate resources
for scientific workflows from both FermiCloud and public
clouds such as Amazon EC2. However, how to dynamically
allocate resources for the scientific workflows that reduces the
average response time of scientific workflows as well as entire
system’s operational cost is a research and also an engineering
challenge yet to be overcomed.

The resource allocation problem in cloud computing started
to draw more attention in the research community in recent
years [11], [6]. However, most of the research in the resource
allocation area assumes that the virtual machine launching
overhead is negligible. As a result of this assumption, nei-
ther the launching overhead nor the dependency between the
overhead and resource utilization are taken into consideration
in designing their resource allocation algorithms. However,
our production line operation data indicates that the virtual
machine launching overhead can have significant variations.

The VM launching overhead has two aspects, i.e. (1) it
consumes system resources while it is launched and (2) it
takes time to complete the process of the launch. Both of these
types of overhead can impact the system’s performance. More
specifically, VM launching consumes a significant amount of
CPU and disk IO resources, leading to a high system CPU
and disk IO utilizations at the time of launching. If each host
computer in the private cloud happens to launch a new virtual
machine at the same time, due to high system utilization caused
by VM creations, the computer cloud may consider all the
hosts fully occupied and decides to perform cloud bursting
and create the virtual machine on an external public cloud.
Such additional cost is unnecessarily rendered and could be
prevented if we have a VM launch overhead reference model.

Furthermore, if a task requires an additional virtual ma-
chine in order to complete its work, but the virtual machine
takes a much longer time to complete its launching than
expected, it is possible that the task has already finished its



work before the virtual machine is ready for executing the
task. This again leads to resource waste and an added cost
due to without a VM launching overhead reference model.

In this paper, we are to (1) study the VM launching
overhead behavior based on real operational data obtained
from FermiCloud; (2) develop a reference model for virtual
machine launching overhead from both timing and utilization
perspectives; and (3) evaluate the accuracy of the developed
reference model.

The rest of the paper is organized as follows: Section II
discusses related work. Section III analyzes the virtual machine
launching overhead through a large amount of experiments on
FermiCloud. Section IV presents a reference model for virtual
machine launching overhead. Section V evaluates the accuracy
of the proposed model. We conclude the work in section VI.

II. RELATED WORK

Lots of researches have been done on evaluating the cloud
performance and modeling cloud. One of the most influencing
cloud modeling tool is CloudSim [6] developed by CLOUDS
lab from the University of Melbourne. The CloudSim is a
java based cloud simulation tool that supports modeling and
simulation of large scale cloud computing environments. It
provides a cloud modeling that models cloud infrastructure
physical machines’, and virtual machines’ characteristics and
behaviors, a cloud market modeling that models the cost
of resources, a network modeling that models the network
behavior of inter-networking of clouds, a cloud federation
modeling that models the communication between clouds, a
power consumption modeling that models the power consump-
tions in the datacenter, and a resource allocation modeling
that models virtual machine allocation policies. The CloudSIm
provides a relative comprehensive modeling tool that covers
almost all the basic elements under a cloud environment.

Recently, Huber et al.’s work evaluated the virtualization
performance and proposed a virtualization overhead model [9].
In their work, they mainly focus on two virtualization plat-
forms, XenServer and VMware ESX. They test the perfor-
mance downgrades that is brought by the virtualization. They
test the CPU, memory, disk IO, and network performance
degradations on both XenServer and VMware ESX platforms.
Based on the experiments, they categorized the virtualization
performance influencing factors into four major categories:
virtualization type, hypervisor’s architecture, resource manage-
ment configuration and workload profile. However, Huber’s
model does not consider virtual machine launching overhead,
it only provides the computation overhead that is brought by
the virtualization.

Researchers adapted the above cloud models and cloud
simulations tools and proposed significant contributions to
resource allocation on clouds, such as resources provisioning
algorithms from QoS perspective [7], from service providers’
profit perspective [14] and from energy consumption per-
spective [5]. Recently, Mengxia Zhu et al. proposed a cost
effective scheduling for scientific workflow under cloud envi-
ronments [11]. Their scheduling algorithm aims to shorten the
application’s response time and reduce the energy consumption
simultaneously by considering the virtual machine launching
overhead.

Fig. 1: System Architecture

However, they did not consider the variation of the virtual
machine launching overhead. Not only Zhu’s work, including
CloudSim, few other researchers have taken virtual machine
launching overhead variation as an key variable for designing
resource allocation algorithms. However, the virtual launching
overhead may have a large variation that may cause significant
impact on the resource allocation process. In the FermiCloud
bursting project, the design of the resource allocation algorithm
aims to automatically allocate resources for the scientific work-
flows that need extra computational resources. If the virtual
machine launching overhead variation is not well modeled
and calculated, the system utilization and efficiency may be
pulled down dramatically. Furthermore, it may cause resource
and energy waste. Hence, we need an accurate mathematical
model for the virtual machine launching overhead. The refer-
ence model we propose in the paper is drawn from a large
amount of experimental observations. The formal analysis of
the experiments is discussed in the next section.

III. ACTUAL VM LAUNCHING OVERHEAD ON
FERMICLOUD

In this section, we study the patterns of the virtual machine
launching overhead based on the virtual machine operations in
the FermiCloud production cloud environment.

A. FermiCloud System Configuration

The FermiCloud uses OpenNebula [3], [12] as its cloud
platform. As illustrated in Fig. 1, the system has an OpenNeb-
ula front-end server that manages the entire cloud infrastruc-
ture, an image repository that stores all VM images, and a set
of host machines on which VMs are deployed.

The OpenNebula front end server has 16-core Intel(R)
Xeon(R) CPU E5640 @ 2.67GHz, 48GB memory. Fifteen
homogeneous hosts are used for the experiments. All the
fifteen hosts are configured with 8-core Intel(R) Xeon(R) CPU
X5355 @ 2.66GHz and 16GB memory. All these machines are
connected through high speed Ethernet.

Under OpenNebula [4], the VM launching process consists
of four major states. Fig. 2 illustrates the state change during a
VM launching process in OpenNebula [4]. In particular, when
a user creates a new VM, the VM enters the pending state. In
the pending state, the cloud scheduler decides where to deploy
the VM. Once the VM has been deployed on a specific host,
it enters into the prolog state in which all VM related files
(images in our case) are transferred from the image repository
to the host machine. After all the files are copied to the host,
the VM enters the boot state, during which it is booted from
the host. Finally, after the VM is successfully booted, it enters



into the running state. Once a VM is in its running state, it is
ready to execute tasks.

Fig. 2: VM Launching State Diagram[4]

B. Base VM Launching Overhead

We first obtain the baseline utilization overhead of launch-
ing a new VM. In order to get the baseline utilization overhead
of launching a new VM, we let all the host machines in the
private cloud be empty, i.e. have no application being deployed,
before launching a VM. Each time, a single VM is launched.
All the launched VMs are configured with one virtual core and
2 GB memory. We retrieve the exact virtual machine launch
time from each virtual machine’s system log. The experiment
is repeated ten times.

Fig. 3: VM Launching CPU Utilization Overhead

Fig. 3 shows the average system CPU utilization variation
in the process of launching a VM. The x-axis represents the
time instance of sampling points. The sampling interval is ev-
ery 10 seconds and it is used for all the other experiments. The
y-axis indicates the host machine’s CPU utilization consumed
by the process of a single virtual machine. For convenience,
throughout the paper, we refer the CPU utilization consumed
by a VM on a host machine as the VM’s CPU utilization.

Since the host machine consists of multiple CPU cores,
the VM’s CPU utilization represents a single CPU utilization
consumption by the VM’s process. If the VM’s CPU utilization
exceeds 100%, it means the VM occupies more than one CPU
cores.

As shown in Fig. 3, there are two different CPU utilization
variation trends. The first part, from time 0 to time 14, is due
to the prolog procedure, which fully consume a CPU until
the image is copied to the host. The second part, from time
15 to time 120, is due to the booting procedure. Once the
booting procedure starts, it immediately reaches a high CPU
utilization and the CPU utilization slowly decreases after the
services are started. When VM’s CPU utilization remains close
to constant, the VM is considered to be in running state. We
denote the VM’s CPU utilization variation trends in Fig. 3 as
the baseline VM launching CPU overhead and use it as the
base for comparisons in following experiments.

C. CPU Utilization Impact

The above experimental data indicates that VM launching
overhead causes system CPU utilization to change on an empty
machine. In reality, most of the VMs are not launched on
empty hosts. Thus, it is interesting to see how the system
utilization influences the VM launching process. The following
sets of data are obtained to investigate the influence of system
utilization on the VM launch overhead.

1) Different system utilization: In this experiment, VMs
are launched under different system utilizations. Fig. 4 depicts
the system CPU utilization change when VMs are launched
under different system CPU utilizations. It indicates that every
time a new VM is launched, the system utilization is suddenly
increased to a high level and remains at the level for a while
before it goes down.

Fig. 4: VM Launching Overhead under Different System
Utilization

Fig. 5 shows the booting utilization variations for different
VMs. As indicated in the figure, the variations converges to
the same value. In fact, the variation of the booting process is
at most 10% while the peak utilization of booting a VM has
a variation of 40%.

Fig. 5: VM Booting Overhead
To clearly distinguish the VM launching overhead change

from the system utilization change, we extract individual VM
launching overheads from Fig. 4 and depict the results in
Fig. 6. Fig. 6 clearly demonstrates that the time of the VM
prolog process changes quite significantly when launching
VMs under different system utilizations.

Table I summarizes the variations. “Util” column indicates
the system’s CPU utilization when a new virtual machine is
created; the column of “Prolog” represents the time increases
for the prolog process when it is compared with the baseline
virtual machine prolog time; the column of “Boot” represents



Fig. 6: VM Launching Overhead Comparison
Util
(CPU)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prolog 0 0 0.38 0.61 0.69 0.84 1.23 1.23 1.46 1.46
Boot 0 0 0 0.03 0.05 0 0.12 0.03 0.01 0.03
Peak
Util.

0 0.10 0.02 -0.05 -0.38 -0.19 0.07 0.07 -0.35 -0.34

TABLE I: VM Launching Overhead Comparison

the time increases for the booting process compared with the
baseline virtual machine booting time; and the “Peak Util.”
column represents the VM’s peak CPU utilization increases
for the booting process compared with the baseline virtual
machine’s booting CPU peak utilization.

As table I indicates, when the system’s CPU utilization
reaches 100%, launching a new VM takes 1.5 times compared
with launching a VM on an empty host. However, if the VM
booting process is isolated out, surprisingly, all the booting
processes take similar amount of time no matter how high the
system utilization is as shown in Fig. 5.

2) Different VM configuration: For previous experiments,
all VMs have the same configuration. To know how the
configurations of the VMs may impact the VM launching
overhead, we repeat the above experiments but with different
VM configurations (2 virtual cores and 4 GB memory). Table II
lists the results of the experiments. The incremental times are
compared with the baseline VMs from table I.

Intuitively, the VM prolog time will not change much as the
same VM image is used for the VMs and the only changes
are the number of CPU cores and the size of memory. The
results confirm that the prolog times remain the same trends
as the baseline VMs. Furthermore, without a surprise, the
VM booting processes also take the same amount of time
as the single core VMs do. Hence, we can conclude that the
VM configurations do not have significant impact on the VM
launching overheads.

D. Disk IO Utilization Impact

The baseline experiments show that the VM launching
overhead consists of two parts, one is the image transferring
and copying process and the other is the VM booting process.
From the above CPU utilization experiments, we have learned

Util
(CPU)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prolog 0 0 0.15 0.23 0.30 0.38 0.84 1.69 1.69 1.76
Boot -0.03 -0.01 0 0 0.05 0 0.07 0.05 0.07 0.05
Peak
Util.

0.24 0.26 0.02 0.06 -0.04 0.07 -0.04 -0.14 -0.31 -0.31

TABLE II: VM Launching Overhead Comparison under
Different VM Configurations

that the VM booting overhead does not change much when the
system utilization changes. However, it is possible that during
the image copying process, the overhead may be influenced
by the disk IO operations and network traffic. We discuss each
below.

1) Launching overhead under different IO utilization:
Since disk IO operations also consume CPU resources. In order
to focus on the impact of disk IO utilization variations, we keep
the system’s CPU utilization as low as possible. As illustrated
in Fig. 7, even when the IO utilization reaches 100%, the CPU
utilization still remains at a relatively lower level (less than
20%). Similar to the VM’s CPU utilization, we refer VM’s IO
utilization as the host machine’s disk IO utilization consumed
by the single VM and system’s IO utilization as the host
machine’s total utilization.

Fig. 7: IO Utilization v.s. CPU Utilization

We use the same VM configuration as used for the baseline
experiments. VMs are launched under different system disk
IO utilization and the results are shown in Fig. 8. As Fig. 8
indicates the VM launching overhead has large variations
when VM starts under different disk IO utilizations. If we
isolate the VM booting overhead, as shown in Fig. 9, we can
clearly notice that the VM booting overhead under different IO
utilizations has significant changes when the disk IO utilization
changes. The VM’s booting time is almost doubled when
launched under fully IO utilized situation when it is compared
to the one launched under an idle host.

Fig. 8: VM Launch Overhead Comparison Under Different
IO Utilization

Table III gives the detailed VM launching overhead incre-
ments under different disk IO utilizations in comparison with
the baseline overhead. In particular, when compared with the
baseline launching overhead, the prolog process takes a much
longer time to copy images to the host machine when the host
machine’s disk IO utilization is high. When the host machine’s



Fig. 9: VM Booting Overhead Comparison Under Different
IO Utilization

Util(io) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Prolog 0.61 1.07 1.31 1.61 1.69 2.07 2.54 3.23 3.53 4.69
Boot 0.03 0.06 0.12 0.20 0.32 0.40 0.41 0.41 0.78 1.09
Peak
Util.

-0.10 -0.57 -0.56 -0.48 -0.40 -0.13 -0.34 0.03 -0.31 -0.38

TABLE III: VM Launching Overhead Comparison under
Different IO Utilization

disk IO utilization reaches 100%, it take almost 5 times to
copy an image compared with copying an image to idle host
machines. Notice that the VM booting processes also take a
longer time (almost twice as much) when the host machine has
frequent disk IO operations. An interesting finding is that the
peak utilization caused by the booting process is much lower
when it is compared with the baseline overhead when the host
disk IO utilization is high.

2) Simultaneous Launching Overhead: Above experiments
give the insight of how host machine’s disk IO operations can
impact the VM launching overhead. This set of experiments
is to investigate if there are mutual influences on launching
overhead among the different VMs when multiple VMs are
simultaneously launched to the same host machine. Under
the same system disk IO utilization, we launch two and later
multiple VMs simultaneously and deploy them on the same
host machine under different IO utilization. Fig. 10 depicts
the results. The data clearly indicates that the prolog time for
the VM is prolonged significantly (700%) when more than one
VMs are launched at the same time.

Fig. 10: System Utilization Variation On Simultaneous
Launching

Figure 11 illustrates the individual VM launching overhead
when multiple VMs are started simultaneously. It is interesting
to see that when multiple VMs are launched, the system
evenly distributes CPU resources to each VM for the prolog
processes. The peak utilization of the VM booting process

No. VMs 2VMs(U=0) 3VMs(U=0) 2VMs(U=1) 3VMs(U=1)
Prolog 2.15 6.92 3.07 7.84
Boot 0.21 0.80 0.70 0.88
Peak Util. -0.20 -0.36 -0.40 0.08

TABLE IV: Simultaneous VM Launching Overhead
Comparison under Different IO Utilization

also decreases proportionally to the reduction of the number
of simultaneously launched VMs.

Fig. 11: Simultaneous VM Launching Overhead Comparison
As depicted in Fig. 11, the VM prolog process time

increases as the system disk IO utilization increases. It is
because the prolog process not only competes with the other
newly launched VMs, it also competes with other VMs that
are running. Table IV shows the statistic comparisons of
simultaneous VM launching overheads under different system
IO utilizations. The first row of the table indicates the number
of VMs created simultaneously and the system IO utilization
on which these VMs are deployed. As shown in the table,
when the system disk IO is idle, simultaneously launching
two VMs takes twice the time to copy the images to the
host compared with the baseline copying process; and seven
times the time to transfer an image to the host when three
VMs are launched in the meantime. When the disk IO is
fully utilized, the time of copying an image is three times as
much for two simultaneous launches and eight times as much
for three simultaneous launches compared with the baseline
image transferring process. While the booting time for each
VM is also increased when the disk IO is fully utilized, the
booting time increase is rather much slower compared with
the prolog process — it is only 1.9 times as much compared
to the baseline booting time.

E. Network Traffic Impact

As discussed above, the image copying process may also
be influenced by the network traffic. In this section, we discuss
the impact of network traffic on the VM launching overhead.
We consider two scenarios for the experiments, the impact of
downstream and upstream bandwidth utilization on the VM
launching overhead, respectively.

1) Network downstream bandwidth Impact: We first test
the influences when the downstream bandwidth is utilized for
other running VMs on the hosts. Intuitively, the downstream
bandwidth will affect the image transferring time. If the
available spare bandwidth for the newly launched VM is
relatively small, the bandwidth then will become the bottleneck
for launching VMs. However, after VM images are copied to
the host, the booting process will not be affected.



Fig. 12: VM Launching Overhead Comparison Under
Different Network Downstream Bandwidth

Bandwidth (down) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prolog 2.16 1.08 0.66 0.83 0.66 0.50 0.16 0.16 0
Boot 0 0.10 0.04 0.05 -0.02 0.02 -0.08 0 0.02
Peak Util. 0.07 0.075 -0.20 -0.05 -0.15 -0.05 0.21 -0.05 0.01

TABLE V: VM Launching Overhead Comparison under
Downstream Bandwidth

The overall VM launching overhead comparison is dis-
patched in Fig. 12. It is not difficult to see that when the
downstream bandwidth is highly utilized, the prolog process
of launching a VM is increased. However, without a surprise,
all the VM booting processes take almost the same amount of
time as indicated in Fig. 13.

Fig. 13: VM Booting Overhead Comparison Under Different
Network Downstream Bandwidth

Furthermore, as shown in table V, even when the band-
width is 90% utilized, the prolog time is only twice of the
baseline prolog time; and if the bandwidth utilization is low,
the prolog time decreases quickly and remains at a steady
level when the utilization reaches 0.3. The reason for such
prolog time variation is that the total network downstream
bandwidth is very large compared with the disk IO bandwidth.
When the spare bandwidth available for transferring an image
becomes larger than the available disk IO bandwidth, the disk
IO bandwidth becomes the bottleneck. Hence, the minimum
available network downstream bandwidth and disk IO band-
width decides the image transferring overhead.

2) Network upstream bandwidth Impact: Evaluating the
impact of upstream bandwidth utilization on the VM launching
overhead takes the same steps as for the downstream band-
width limitations. Intuitively, the upstream bandwidth utiliza-
tion does not have significant impact on the VM launching
process and our data confirms this.

As shown in Fig. 14 and Fig. 15, almost all the VMs’
overheads match with each others’. However, there is one

Fig. 14: VM Launching Overhead Comparison Under
Different Network Upstream Bandwidth

Fig. 15: VM Booting Overhead Comparison Under Different
Network Upstream Bandwidth

exception. The VM launched under 40% upstream bandwidth
utilization takes an extremely long time for the entire launching
process. Our further investigation of the system log indicates
that at the time when the VM is launched, the host machine
happens to have IO operations for some system critical ser-
vices.

F. Image Repository Impact

The FermiCloud architecture as shown in Fig. 1 contains
an image repository which can also become a bottleneck when
large number of VMs are launched simultaneously even when
they are deployed on different hosts. In order to evaluate the
impact of sudden large number of simultaneous launches on
the VM launch overhead, we set up another experiment using
the baseline VM configuration. In particular, we launch a VM
to a host, and simultaneously launch more VMs to different
hosts. Fig. 16 illustrates the overall VM launching overheads
when different number of VMs are launched simultaneously. It
is obvious that when more VMs are launched simultaneously,
the image repository’s disk IO/network bandwidth become
a bottleneck. In particular, when seven VMs are launched
simultaneously, the prolog time increases 3.5 times compared
with the baseline prolog time.

Notice that the CPU utilization for the prolog process
becomes lower when a VM is launched with more VMs simul-
taneously. This is because when multiple VMs are launched

Bandwidth(down) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Prolog 0.61 0.38 0.23 1.53 0.23 0.76 0.23 0.07 0.31
Boot -0.10 0.05 -0.01 0.27 0 0.32 -0.02 -0.02 0.028
Peak Util. -0.02 0.03 0.016 -0.55 0.11 -0.18 0.15 0.03 0.016

TABLE VI: VM Launching Overhead Comparison under
Upstream Bandwidth



Fig. 16: VM Launching Overhead Under Different
Simultaneous Launches on Different Hosts

Fig. 17: VM Prolog Overhead Under Different Simultaneous
Launches on Different Hosts

together, the disk IO bandwidth/network bandwidth of image
repository is evenly distributed among each of them. For each
machine, its prolog process does not fully occupy the disk IO
utilization, hence the CPU utilization for the prolog process
becomes lower.

Fig. 18: VM Booting Overhead Under Different
Simultaneous Launches on Different Hosts

As shown in Fig. 18 and table VII, the overhead for the
VM booting processes remains at the same level as the baseline
VM booting overhead.

G. Summary

From these experiments, we can conclude the following:

Simul. Launches 1VM 2VMs 3VMs 4VMs 5VMs 6VMs 7VMs
Prolog 0.15 0.38 0.46 1.23 1.92 2.53 3.46
Boot -0.12 -0.13 -0.10 0.21 0.02 0.13 0.03
Peak Util. -0.13 0.13 0.11 -0.05 0.01 -0.04 -0.04

TABLE VII: VM Launching Overhead Comparison Under
Different Simultaneous Launches on Different Hosts

• VM launching overhead mainly contains two parts:
prolog (image copying/transferring) overhead and
booting overhead;

• booting overhead is relatively steady, i.e. has less
variations, when it is compared to the prolog overhead;

• prolog overhead, on the other hand, has significant
variations under different disk IO utilization, network
bandwidth utilization on both host machines and im-
age repository; and

• disk IO utilization has significant impact on both
prolog overhead and booting overhead.

In the next section, we present a reference model for the
VM launching overhead based on the data obtained.

IV. VM LAUNCHING OVERHEAD MODELING

Before we present the reference model for the virtual
machine launching overhead in private cloud, we first introduce
notations to be used in defining the reference model. In
particular, A virtual machine in a private cloud is defined
as v = (f, t, h), where f is the image size of the virtual
machine, t is the virtual machine launch time and h is the
host machine that the virtual machine is to be deployed on.
For each host hi, we denote Vhi

= {v1, v2, . . . , vn} as the set
of virtual machines the host has. In the set Vi, virtual machines
are sorted according to their launch time in none decreasing
order. The Bn and Bd denote host machine network bandwidth
and disk IO bandwidth, respectively; avn(hi, t), avd(hi, t) and
avi(t) denote the available network bandwidth on host hi,
disk bandwidth on host hi, and network bandwidth on image
repository at time t, respectively.

The proposed reference model contains three different
overheads: timing overhead which is the time needed for
launching a VM untill it is ready to execute tasks; disk IO
utilization overhead and CPU utilization overhead. We first
model the CPU utilization and disk IO utilization that a single
VM consumes on the host machine during the launching
process. Then we model the host machine’s entire system CPU
utilization and disk IO utilization. As discussed in section III,
the complete VM launching process mainly consists of two
parts: prolog and boot process. We discuss the reference
models for these two steps below.

A. Prolog Overhead Model

The prolog overhead we modeled in here also contains
three different overheads: timing overhead which is the time
needed for transferring an image from image repository to the
host machine; disk IO utilization overhead and CPU utilization
overhead. Let AVband = min{avd(hi, ti), avn(hi, ti), avi(ti)}.
The image transfer time for virtual machine vi is defined
below:

(1)Transi =
fi

AVband ∗ w ∗ Us(hi, t− 1)

where Us(hi, t) is the system’s CPU utilization that is defined
in section IV-E, and w is a constant that represents how much
impact that the system’s CPU utilization has on the image
transferring process.



From the experiments we know that if the disk IO is fully
utilized for the image transferring process, the process also
fully utilizes one physical core of the host machine. If the
disk IO is not fully utilized for the image transferring process,
then the CPU utilization is the available disk IO bandwidth
proportional to the total IO bandwidth. We first define the
base CPU utilization function for image transferring process
as follows:

(2)Utr base(i, t) =
1

1 + e−0.5(Transi+ti)(t−ti)
−

1

1 + e−0.5(Transi+ti)(t−(Transi+ti))

The IO utilization consumed by a VM’s prolog process is
modeled as the IO bandwidth occupied by image transferring
process to the total bandwidth. Hence, the IO utilization of
transferring an image for virtual machine vi is modeled as:

(3)IOtr(i, t) =

{
AVband

Bd
ti ≤ t ≤ ti + Transi

0 otherwise

Then, the CPU utilization of transferring an image for
virtual machine vi is modeled as:

(4)Utr(i, t) = IOtr(i, t) ∗ Utr base(i, t)

B. Booting Overhead Model

The virtual machine booting overhead also refers to the
timing overhead and CPU utilization overhead. As once the
image is copied to a host, it will not consume any disk IO
utilization for the booting process. We consider that there is
no disk IO overhead for the virtual machine booting process.
The experiments also indicate that the system CPU utilization
impact the booting overhead. Hence, we model the CPU uti-
lization overhead for the virtual machine vi’s booting process
as follow:

Ub(i, t) = c ∗ 1

m
e−γ(1−IOs(hi,t−1))(t−Transi)) (5)

where c and γ are two constants,m is the number of cores on
the host machine and IOs(hi, t) represents the system’s disk
IO utilization at time t. We will formally define the system
disk IO utilization in section IV-E.

In OpenNebula, VMs are not immediately ready for use
until all the necessary services, such as ssh, are started. As
there is no accurate way to tell the actual time when a
virtual machine is booted and ready to use unless entering
the running virtual machine and check the log, therefore, we
base our estimation fo the time points on the variation of the
virtual machine’s CPU utilization consumption. If the virtual
machine’s CPU utilization consumption remain stable, then we
consider the virtual machine is booted and ready to use. We
define the time point tb(i) of a virtual machine vi is ready to
use as:

tb(i) = max{t|U ′b(i, t) ≤ ε} (6)

where ε is the threshold to determine whether the virtual
machine’s CPU utilization consumption become stable. Then,
we can calculate the virtual machine booting time is as
tb(i)− Transi.

C. Virtual Machine Launching Overhead Model

We have formally modeled image transferring overhead
and virtual machine booting overhead. Combining the two
compoments together, we derive virtual machine launching
overhead functions. In particular, combining equation 4 and
equation 5, the virtual machine vi’s launching CPU utilization
function is modeled as:

U(i, t) =

{
Utr(i, t) t ≤ ttran
Ub(i, t) t > ttran

(7)

Since the virtual machine booting process does not con-
sume any IO utilization, the IO utilization function for virtual
machine vi’s launching process is still equation 3.

The total time needed for launching a virtual machine vi
then can be calculated as image copying time plus virtual
machine booting time. It is formally defined as follow:

toverhead(i) = tb(i)− ti (8)

D. Virtual Machine Utilization Consumption Model

The complete virtual machine utilization functions consist
of the virtual machine launching overhead utilization functions
and the utilization functions after workloads are deployed on
the virtual machine. We assume at time t′ ≥ tb(i), the virtual
machine vi starts executing tasks; and the CPU and disk IO
utilization consumption function of vi at t′ are Uw(t) and
IOw(t), respectively. Then the virtual machine CPU utilization
consumption model is defined below:

Uc(i, t) =

{
Utr(i, t) t ≤ ttran
Ub(i, t) t > ttran
Uw(i, t) t ≥ t′

(9)

The virtual machine IO utilization consumption model is
defined as:

IOc(i, t) =

{
IOtr(i, t) ti ≤ t ≤ ti + Transi
IOw(i, t) t ≥ t′
0 otherwise

(10)

E. System Utilization Model

We assume that host machines only run virtual machines
and all other critical system services consumes a small portion
of the system CPU and IO utilization. Then we can calculate
the system CPU and disk IO utilization as the summation of
the virtual machines’ CPU and IO utilization consumptions.
The system CPU utilization of host hi is modeled below:

Us(hi, t) = max{1,
|Vhi
|∑

j=1

{Uc(j, t)}} (11)

The system IO utilization of host hi can be modeled as:

IOs(hi, t) = max{1,
|Vhi
|∑

j=1

{IOc(j, t)}} (12)



V. EVALUATION

We build the reference model for the virtual machine
launching overhead from a large amount of real system ex-
perimental data. However, we cannot guarantee the accuracy
of the model unless we compare the calculated data using
the model we built with the real system data and prove the
accuracy of the model. In order to measure the accuracy of the
proposed reference model, we introduce an evaluation criteria
called average utilization difference. We denote N as the total
number of sampling points. The average difference is defined
as follows:

dif =
1

N

N∑
i=1

|Ur(i)− Us(i)| (13)

where Ur(i) and Us(i) represents the real data and calculated
data at ith sampling point.

Another important criteria needed to be evaluated is the
launching time overhead. To check the real time point for the
virtual machine that is ready to use, we use the virtual machine
system log to check the starting time point of the ssh service.
We also calculate the difference between the real VMs’ ready
time and the calculated ready time to evaluate the accuracy of
the proposed model.

We first compare the baseline overhead obtained by calcu-
lating the value based on formula 7, and the real data obtained
on FermiCloud.

Fig. 19: Baseline VM Launching Overhead using Proposed
Model

Fig. 19 draws the CPU utilization during a virtual ma-
chine’s launching process using the proposed VM launching
overhead model. Compare the graph with the utilization vari-
ations shown in Fig. 3 as for the baseline virtual machine
launching overhead. The calculated data using our proposed
model is very close to the real data.

Fig. 20: Baseline VM Launching Overhead Comparison

Utilization Difference Time Difference
Baseline 0.0003 -0.023
2 Sim. Launches 0.0446 -0.051
3 Sim. Launches 0.0628 -0.017
Random Launches 0.0491 -0.069
Overall 0.0392 -0.040

TABLE VIII: Performance of the Proposed Model

If we put two data sets at the same page, as shown in
Fig. 20, our model accurately represents the baseline CPU
utilization variation. Table VIII gives a more detailed com-
parison between the real data and calculated data. From the
table, we can observe that the difference between the real data
and the calculated data using our proposed model is only about
0.03% of the system CPU utilization. The estimated launching
overhead calculated by our model is only 2.3% below the
actual launching overhead.

We further evaluate when more than one VMs are launched
simultaneously. Fig. 21 shows the CPU utilization variation
comparison between the real data and calculated data from the
reference model, i.e., formula 7, when two virtual machines
are launched at the same time. Fig. 21 indicates that the CPU
utilization difference between real data and calculated data is
4.46% of the system CPU utilization, launching time overhead
is also very close to the actual time, only 6% difference. The
detailed analysis is given in table VIII.

We increase the number of simultaneous launches to three
VMs. The results are depicted in Fig. 22. The CPU utilization
difference between real data and calculated data is 6.28% of
the CPU utilization; and the estimated launching time overhead
is about 1.7% less than the actual measured value.

Fig. 21: VM Launching Overhead Comparison with 2
Simultaneous Launches

Fig. 22: VM Launching Overhead Comparison with 3
Simultaneous Launches

For the last set of evaluations, we randomly launch multiple



virtual machines under different CPU and IO utilization and
at different time instances. We use the reference model to
calculate the same scenario for the virtual machine launching
process in a real cloud environment. The results are shown in
Fig. 23.

Fig. 23: System Utilization Variation Comparison

As shown in the figure, the two lines are almost merged
together. In real environment, there are additional services
running on the host machine other than the virtual machines.
As a result, they whole system CPU utilization variation is
more unpredictable as there are additional CPU utilization
consumption in addition to virtual machines. However, the
whole system utilization difference between the real data and
calculated data is rather small, only 4.91% of the system CPU
utilization. When we compare the virtual machine launching
time overhead, the difference is still very small, less than 7%.

VI. CONCLUSION

The FermiCloud is a private cloud built by Fermilab for
the scientific workflow. The Cloud Bursting project on the
FermiCloud enables the FermiCloud, when more computa-
tional resources are needed, to automatically launch virtual
machines to available resources such as public clouds. One of
the main challenges in developing the cloud bursting module is
to decide when and where to launch a VM so that all resources
are most effectively utilized and the system performance is
optimized. We have found that the VM launching overhead
has a very large variation under different system states, i.e.
CPU/IO utilizations can have significant impact on cloud
bursting strategies. Hence, being able to model accurately the
dependency between VM launching overhead and system re-
source utilization is critical in deciding when and where a VM
should be launched. This paper has studied the VM launching
overhead patterns based on data obtained on FermiCloud and
presented a VM launching overhead reference model to guide
cloud bursting process. To our best knowledge, this is the first
reference model for virtual machine launching overhead that
incorporates the dynamics and variation during virtual machine
launching process. Our next engineering step is to integrate the
reference model into the cloud bursting decision algorithms.

It is worth pointing out that during our experiments, we
find that virtual machine launching overhead is mainly caused

by the image transferring process. It is not hard to understand
that if the image copying/transferring process can be well con-
trolled, the virtual machine launching overhead will become
relatively stable and easy to model. As overhead reference
model we proposed in this paper consists of two different parts,
i.e., prolog overhead and virtual machine booting overhead,
the model can easily fit the situation when image transferring
process is well managed. We believe that the proposed model
is applicable to other private cloud in general.
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