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Abstract—Nowadays, many different applications can be con-
solidated to the same hardware platform, especially as multi-
core platforms become mainstream. These applications may have
different user perceived values and may or may not share the
same composing tasks. When system resources become scarce
and not all applications can be executed, how to select and
deploy a subset of these applications to maximize the system
value is a challenging problem. In this paper, we first formulate
the problem as an integer linear programming problem, and then
present a computationally efficient heuristic algorithm, i.e., the
Max-Min-Min algorithm, to appropriately select applications and
map their tasks to different processing elements such that all the
timing requirements of the applications are met and the overall
system value is maximized. The experimental results demonstrate
that the proposed heuristic approach provides a good balance
between the solution quality and the solution computation cost
when compared with the solutions obtained by CPLEX solver
and by other commonly used heuristic algorithms, respectively.

Index Terms—Application Selection, Task Deployment, Real-
time Embedded System, Heterogeneous Processors

I. INTRODUCTION

Nowadays, different applications are consolidated to the

same hardware platform to meet the growing demand for

diverse functionalities [1], [2]. Furthermore, for a given sys-

tem, although the functionalities of the applications may be

different, their composing tasks can be shared. A simple

example is shown below, which is a simplified version of the

example given in [3].

Example 1: Assume there are two applications in a traffic

surveillance system. One is to record vehicles’ information

that pass by the crossroad, and the other one is to report

a speeding event to the nearest policeman. To facilitate the

first application, we need to perform the following tasks: (1)

vehicle detection, (2) speed estimation, and (3) data storing.

The second application consists of following tasks: (1) vehicle

detection, (2) speed estimation, (3) speed checking, and (4)

event reporting. The two applications and their composing

tasks are shown in Fig. 1.

From Fig. 1, we can see that although the functionalities of

these two applications are different, vehicle detection task and

speed estimation task are shared among the two applications.

In other words, the vehicle detection task and speed estimation

task are executed only once and the results are used by both

applications. �

Fig. 1. Task sharing between two applications [3]

For a given system, the value that different applications

contribute to the system may different at different times.

For instance, in above example (Example 1), the application

which reports speeding event may be more important than

vehicle information recording application during the day, and

recording vehicle information may be more critical at night.

When system resources are limited and not all applications

can be executed with guaranteed QoS, decisions have to be

made as to which applications should be selected so that

the overall system value is maximized. In addition, real-time

systems often use a variety of heterogeneous processors, such

as digital signal processing (DSP) chips [4], graphic processing

units (GPUs), and general-purpose processors, due to the need

for high-performance. Because of the processor heterogeneity,

task execution times may be different when they are deployed

on different processors.

Given a set of applications and characteristics of a hardware

platform, the goal of the paper is to judiciously choose a subset

of the applications such that all tasks can meet their deadlines

and the system value is maximized. This is a typical NP-hard

problem with its time complexity increasing exponentially

with the number of tasks and processors [5]. Traditionally,

this problem can be solved using methods such as the genetic

algorithm [6] and simulated annealing [7]. These approaches

work well during the off-line design phases when the design

parameters are well-defined and timing complexity is impor-

tant but not critical. However, as mentioned before, the value

function for each application in our case may change from time

to time. Run-time variations may also change the architecture

(e.g. core wear out fault) and application characteristics (e.g.
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execution times) of a system. Therefore, a computationally

efficient heuristic becomes more desirable to accommodate

the run-time variations and maximize the system value. In this

paper, we make the following main contributions:

• We formulated the problem of system value maximization

with resource constraints as an integer linear program-

ming (ILP) problem;

• We proposed an efficient heuristic approach that can

provide solution which is close to the optimal solution

with polynomial time complexity;

• We conducted extensive experiments to study the perfor-

mance of the proposed approach by comparing it with

the theoretically optimal one (i.e. CPLEX solver [8]) and

other heuristic approaches in the literature.

The reminder of this paper is organized as follows. In

Section II, we discuss the related work. The system model

and problem definition are presented in Section III. The ILP

formulation of the problem is presented in Section IV. In

Section V, we present a heuristic algorithm to select the

applications and decide the processors upon which the tasks

associated with the selected applications are deployed. The

experimental results are discussed in Section VI. Finally, in

Section VII, we conclude our work and point out the future

work.

II. RELATED WORK

The research regarding task deployment has been inten-

sively studied from different perspectives. For example, some

research focuses on deploying task set on identical proces-

sors [9]–[13]; while in [14]–[16], the research is to investigate

the feasibility of deploying task set on a given set of uniform
processors.

Anderson et al. take a step further to partition processors

into two categories, i.e, type-1 and type-2 processors, and

study the task deployment problem on ‘semi-heterogeneous’

processors [17]. Baruah in [5] proposed a polynomial time

algorithm to decide whether a set of tasks can be deployed

to a collection of heterogeneous processors. The algorithm

first transforms the task deployment problem into an Integer

Linear Programming (ILP) problem, and then applies the

Linear Programming (LP) relaxation technique to solve this

problem. The algorithm works well only when the number

of processors is small as the time complexity of the linear

programming relaxation algorithm is O(mm) where m is the

number of processors.

Gopalakrishnan et al. also studied the task deployment

problem on heterogeneous multiprocessor systems [18]. They

proposed a heuristic algorithm 1 to deploy tasks in a way

that the maximum utilization of all processors is minimized.

Armstrong et al. presented a Minimum Execution Time (MET)

algorithm [19] to minimize the makespan when scheduling a

collection of tasks among a set of heterogeneous processors.

1We call it utilization balanced (UB) algorithm in the paper for easy
reference.

Unlike [18], MET algorithm assigns a task to the processor

on which the task’s execution time is minimized.

As we can see that the major differences between the work

mentioned above and ours are twofolds: the objective of the

work discussed above is to meet all task deadlines; while ours

is to maximize overall system value with the constraint that

all selected tasks must meet their deadlines; and the model of

the work mentioned above is based on a set of independent
tasks; while our model is based on a set of applications which
may share tasks.

It is also worth pointing out that although the problem we

are to address in the paper is similar to the multidimensional

knapsack problem (MKP) [20], [21] on surface, the essence

of these two problems are different. In MKP, the amount of

resources required by different items on different knapsacks

is given and fixed. In our problem, the utilization demand of

different applications is unknown.

In [22], a Utility Accrual (or UA) real-time scheduling

algorithm is proposed to schedule a set of tasks. Each task

is associated with a time-utility function (TUF), and the

scheduling goal is to maximize total accrual utility. Our work

has similar concept in that we also aim to maximize overall

system value. The differences lie in that the UA model assumes

task values are independent; while in our model, values are

applied to applications. As applications may share tasks, the

simple value-monotonic approach becomes insufficient.

III. SYSTEM MODELS AND PROBLEM FORMULATION

We assume that a real-time embedded system hosts a set of

applications. Each application consists of a set of independent

real-time periodic tasks. Some tasks may be shared among

different applications. These tasks are executed on a set of

heterogeneous processors. To better formulate our problem,

we first introduce the following notations and definitions:

• Processor Set Π = {π1, π2, · · · , πk} represents all

processors (i.e. total k) in the system, where πi denotes

processor i.
• Application Set A = {α1, α2, · · · , αm} represents all

candidate applications in the system (i.e. total m), where

αi represents application i.

• Application Value Vector
−→
V m = [v1, v2, · · · , vm] rep-

resents the value that each application can contribute to

the system if all of its tasks are completed before their

deadlines, where vi is the value application for αi.

• Task Set Γ = {τ1, τ2, · · · , τn} represents the total

number of real-time tasks (i.e. total n) in application

set A, where τi represents the i-th real-time task. Each

real-time task τ is characterized by two parameters, i.e.

τ = (e, p), where e and p represent the task execution

time and period, respectively. We assume all tasks are

released at the beginning of each period and the deadline

is the end of its period.

• Application-Task Matrix Am×n defines the task com-

position for each application in A. Specifically, Am×n =
(bi,j)m×n, where bi,j ∈ {0, 1}. bi,j = 1 indicates that
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application αi contains task τj . Task τj does not belong

to application αi if bi,j = 0.

• Task-Execution-Time Matrix En×k indicates the dif-

ferent execution times for each type of tasks running

on different PEs. Specifically, En×k = (ei,j)n×k, where

ei,j ∈ �+ ∪ {+∞} represents the execution time when

processor πj only executes task τi. We use ei,j = +∞
to indicate that processor πj cannot perform task τi.

We make the following assumptions:

• Assumption 1: each task can only be deployed to at most

one processor.

• Assumption 2: every task that belongs to a selected

application must be deployed to a processor.

• Assumption 3: on each processor, preemptive Earliest

Deadline First (EDF) scheduling policy is applied.

With the above definitions and assumptions, the problem of

maximizing overall system value under resource constraints

can be formulated as follows:

Problem 1: Given Π, A,
−→
V m, Γ, Am×n, En×k as defined

above, select As ∈ A and assign tasks in As (i.e. Γs ∈ Γ) to

Π such that all tasks in Γs can meet deadlines and the overall

value of As is maximized.

�
The problem defined above is a typical resource-constrained

optimization problem, which has been proved to be NP-

hard [5]. In what follows, we first formulate the problem as an

ILP problem. We then present a more computationally efficient

heuristic to solve this problem.

IV. THE ILP FORMULATION

In this section, we formulate Problem 1 as an ILP problem.

The most significant advantage of the ILP formulation is that

we can obtain the theoretical optimal solution to Problem 1

using available ILP solvers (such as CPLEX solver [8]).

To formulate the problem into an ILP problem, we first

define two variables:

• Application Selection Vector
−→
Am identifies the appli-

cations to be chosen in the system. Specifically,
−→
Am =

[a1, a2, · · · , am], where ai ∈ {0, 1}. Application αi is

selected if ai = 1, or ai = 0, otherwise.

• Task-Deployment Matrix Dn×k determines how tasks

are assigned to different processors. Specifically, Dn×k =
(di,j)n×k, where di,j ∈ {0, 1} and di,j = 1 indicates that

task τi is deployed on processor πj , and di,j = 0 indicates

the opposite.

For a given task-deployment matrix Dn×k, based on As-

sumption 1, we have

k∑
j=1

di,j ≤ 1 i = 1, 2, . . . , n (1)

In addition, to ensure Assumption 2, we have

ai × bi,j ≤
k∑

l=1

dj,l j = 1, 2, . . . , n; i = 1, 2, . . . ,m (2)

As preemptive EDF scheduling policy is used on each

processor (Assumption 3), in order to guarantee all deployed

tasks meeting their deadlines, we have to ensure that the

utilization demand Uj on processor πj (1 ≤ j ≤ k) is within

the bound given by Liu et al. [23], i.e.,

Uj(Γj) =
∑
τi∈Γj

ei,j
pi
≤ 1 j = 1, 2, . . . , k (3)

where Γj refers to the set of tasks deployed on processor

πj , ei,j and pi are task τi’s execution time on processor

πj and period, respectively. As such, the ILP formulation of

Problem 1 can be described as follows:

maximize ν =
−→
Am × (

−→
V m)

T (4)

Subject to:

k∑
j=1

di,j ≤ 1 i = 1, 2, . . . , n (5)

ai × bi,j ≤
k∑

l=1

dj,l j = 1, 2, . . . , n; i = 1, 2, . . . ,m (6)

n∑
i=1

ei,j
pi
× di,j ≤ 1 j = 1, 2, . . . , k. (7)

where ai, di,j , bi,j ∈ {0, 1}.
As simple as the ILP formulation may seem to be, its

computational cost grows exponentially with the size of the

problem, i.e. the numbers of applications, tasks, processors,

etc. Since the application values may change from time to

time, and in order to accommodate the dynamics in the run-

time environment, it is necessary that we solve Problem 1

on the fly. The traditional approaches, i.e., CPLEX solver [8],

genetic algorithm [6] and simulated annealing [7], etc., become

infeasible for large and complex system. In what follows, we

present our heuristic to solve this problem with comparable

results but much less computational cost.

V. A HEURISTIC APPROACH TO MAXIMIZING OVERALL

SYSTEM VALUE

As shown in our problem formulation, to solve the problem,

we need to solve two sub problems: how to judiciously select

a subset of applications, and how to map the corresponding

tasks to processors. In what follow, we discuss our approach

to each sub problem accordingly.

A. Application Selection Criteria

Before presenting our approach to application selection, we

first use a simple example to gain some intuitions.

Example 2: Assume that a system has three processors

Π = {π1, π2, π3}, five applications A = {α1, α2, α3, α4, α5},
with the value of each application given in vector

−→
V 5 =

[v1, v2, v3, v4, v5] = [100, 45, 70, 50, 60]. Assume that all tasks

in the application set are Γ = {τ1, τ2, · · · , τ7}. The rela-

tionship between the applications and the tasks is given in

Application-Task matrix A5×7.
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A5×7 =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

The execution time of each task τi (1 ≤ i ≤ 7) on processor

πj (1 ≤ j ≤ 3) is shown in Task-Execution-Time matrix E7×3.

E7×3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+∞ 8 +∞
13.5 +∞ +∞
1 1.5 2
3.2 +∞ 6.4
8 6 +∞

+∞ 9.6 +∞
9 +∞ +∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where +∞ indicates that the task cannot be deployed to the

processor.

The periods of the tasks are given in
−→
P 7 =

[p1, p2, · · · , p7] = [10, 15, 5, 8, 10, 12, 10]. Based on the Task-

Execution-Time matrix E7×3 and the period vector
−→
P 7, the

utilization demand of task τi on processor πj , i.e., ui,j =
ei,j/pi, is shown in the Task-Utilization matrix U7×3 as below.

U7×3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+∞ 0.8 +∞
0.9 +∞ +∞
0.2 0.3 0.4
0.4 +∞ 0.8
0.8 0.6 +∞
+∞ 0.8 +∞
0.9 +∞ +∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

To choose the proper subset of applications, one simple

and intuitive approach is to select an application with the

highest value and then optimally deploy its tasks to available

processors. In this example, as application α1 has the largest

value, we select application α1 and deploy its task τ1 and τ2 to

processor π2 and π1, respectively. As there are still resources

remaining, application α3 which has the largest value in the

remaining applications becomes the candidate for selection.

However, as not all of its tasks can be successfully deployed

to the processors because of the utilization constraint (3),

application α3 cannot be chosen. Similar situation happens

for the other remaining applications. Therefore, if we select

applications purely based on their values, only application α1
can be supported, and the total system value is 100.

From the above example, we can see that choosing ap-

plications solely based on their values cannot achieve good

performance in terms of maximizing the total value since the

application with larger value may demand more computation

resources. Another heuristic is therefore to select the applica-

tion based on the value-resource ratio ri defined by (8):

ri =
vi∑

τj∈Γi

avg(uj)
(8)

where Γi refers to the task set that application αi contains,

and ave(uj) = (
∑

ui,j �=+∞ ui,j)/η is the average utilization

demand of task τj , and η is the total number of processors on

which the utilization of task τj is not equal to +∞.

Based on (8), the ratio ri of application α1, α2, · · · , α5 is

r1 = 58.82, r2 = 50, r3 = 53.85, r4 = 62.5, and r5 = 66.67,

respectively. As application α5 has the largest ratio, we select

application α5 and deploy its task τ7 to processor π1. Then

we select application α4 and deploy its task τ6 to processor

π2. The remaining applications cannot be supported because

of the utilization constraint (3). In this case, the overall system

value is 60 + 50 = 110, which is better than the case in which

we select the applications based only on their values.

In fact, the optimal solution is to select application α2
and α3, and deploy task τ3, τ4, and τ5 to processor π1, π3,

and π2, respectively, and the overall system value is 45 +

70 = 115. One observation we can obtain from the optimal

solution is that although both applications α2 and α4 have

two tasks which is twice as many as application α4 and α5,

these two applications share task τ4. This observation suggests

that if task sharing is taken into consideration, the application

selection strategy may improve the solution quality.

�
Based on the discussion in Example 2, we consider the

following three factors when deciding application selection

criteria:

1) the application value;

2) the application’s remaining task utilization demand, i.e.,

tasks that have not be deployed by previous selections;

3) the potential for task sharing among unselected applica-

tions.

In particular, our selection criteria ci is defined as following:

ci =
vi∑

τj∈Γ′
i
avg(uj)/sj

(9)

where sj =
∑m

i=1 bi,j is the number of applications which

share the task τj . Γ′
i is the set of tasks that belong to

application αi, but have not been deployed by other selected

applications. ave(uj) = (
∑

ui,j �=+∞ ui,j)/η is the average

utilization demand task τj , and η is the total number of

processors on which the utilization of task τj is not equal

to +∞.

It is worth mentioning that each time when tasks of an

application are deployed, the value ci of remaining appli-

cations may change because of task sharing. To illustrate

how applications are selected by using criteria ci, consider

an example given below.

Example 3 (Example 2 revisited): Assume the number of

processors, applications, tasks, relationship between applica-

tions and tasks, and the utilization matrix are the same as given

in Example 2. According to formula (9), the value ci for each

application is c1 = 58.82, c2 = 75, c3 = 62, and c5 = 66.67.

As the value of c2 for application α2 is the largest, therefore,

we select application α2, and deploy its task τ3 and τ4 to

processor π1 and π3, respectively. As application α2 shares

task τ4 with application α3, the value of c3 for application α3
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becomes c3 = 100, and the value of ci for application α1, α4,

and α5 remains the same. Hence, application α3 is selected,

and we deploy its task τ5 to processor π2. As the remaining

processing resources after deploying application α2 and α3
are not sufficient to support α1, or α4, or α5. Hence, the total

system value becomes 45 + 70 = 115, which is larger than

the cases in which the applications are selected purely by the

values or the value-resource ratios.

�

B. Deploying Tasks to Processors

In this section, we discuss how to deploy a set of tasks to

different processors. Before presenting our task deployment

algorithm, we first introduce the following definitions.

Definition 1 (Feasible Deployment): For a given task set

Γ = {τ1, τ2, · · · , τn}, the deployment of the tasks is feasible

if and only if it satisfies the following conditions.

k∑
j=1

di,j = 1 i = 1, 2, . . . , n (10)

n∑
i=1

ei,j
pi
× di,j ≤ 1 j = 1, 2, . . . , k. (11)

where di,j = 1 denotes task τi is deployed on processor πj ,

otherwise, it is not. ei,j refers to the execution time of task

τi on processor πj , pi is the period of task τi, k and n is the

number of processors and tasks, respectively.

�
Constraint 10 ensures that each task τi ∈ Γ is deployed to

one and only one processor, and Constraint 11 guarantees that

all tasks on each processor meet their deadlines.

Definition 2 (Remaining Utilization): For a given processor

πj , the remaining utilization U ′
j is defined as

U ′
j = 1−

∑
τi∈Γj

ei,j
pi

(12)

where Γj refers to the set of tasks on processor πj .

�
Definition 3 (Available Processor): For task τi, processor

πj is an available processor if processor πj satisfies (13).

ui,j ≤ U ′
j (13)

where U ′
j is processor πj’s remaining utilization, and ui,j is

the utilization demand of task τi on processor πj .

�
We call the heuristic we developed as a Max-Min-Min

approach. In particular, we first get the minimum utilization

demand of each task to be deployed, then we deploy the tasks

in decreasing order of their minimum utilization, i.e., the task

with maximum minimum utilization demand will be deployed

first, and we deploy it to the processor on which the utilization

demand is minimized.

Algorithm 1 implements the Max-Min-Min heuristic for

task deployment. It works as follows. From Line 3 to Line 11,

task with maximum minimum utilization demand is selected

and deployed to the available processor on which the task’s

utilization demand is minimized. The process is repeated until

either all undeployed tasks have been deployed, or there exists

a task that does not have an available processor to execute it.

In the later case, we set the feasibility to false and remove all

previously deployed tasks from the processors.

Algorithm 1 DEPLOY TASKS TO THE PROCESSORS

Input: The set of tasks to be deployed Γ, Processor set A,

Task-Utilization matrix Un×k.

Output: Task deployment that ensures all tasks meet their

deadlines.

1: feasibility ← true
2: while Γ is not empty do
3: Choose task τi with the maximum minimum utilization

demand.

4: if no available processor exists for task τi then
5: feasibility ← false
6: Remove the previously deployed tasks in Γ from the

processors.

7: break
8: else
9: Deploy task τi to the processor on which the task’s

utilization is minimized

10: Remove task τi from set Γ.

11: end if
12: end while
13: return feasibility

Complexity Analysis: In the while loop (from Line 3 to

Line 11), as the time required to find the undeployed task

with maximum minimum utilization demand is O(kn) and the

while loop itself executes at most n times. Therefore, the time

complexity of Algorithm 1 is O(kn2), where n is the number

of tasks to be deployed and k is the number of processors.

C. A Max-Min-Min based Application Selection and Task
Deployment Approach

In Section V-A and Section V-B, we present a criteria

to select applications and a heuristic approach to deploy

tasks, respectively. In this subsection, we present an integrated

algorithm for application selection and task deployment.

Let Γi denote the tasks that belong to application αi and ΓD

denote the tasks that have been deployed before application αi.

As application αi may share tasks with previously selected

applications, hence when deploying application αi’s tasks, we

only consider those which have not been deployed before, i.e.,

undeployed task set Γ′
i:

Γ′
i = Γi\ΓD (14)

When tasks in Γ′
i are to be deployed, it is possible that

previously deployed tasks ‘occupied’ resources that should

have been allocated to the tasks in current consideration. To

illustrate this situation, consider a simple example given below.

Example 4: Assume a system has two processors Π =
{π1, π2} and two applications A = {α1, α2}. The value of
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application α1 and α2 is 115 and 34, respectively. The two

applications have four tasks in total, i.e., Γ = {τ1, τ2, τ3, τ4}.
The relationship between applications and tasks is given in

Application-Task Matrix A2×4.

A2×4 =
(
1 1 0 0
0 0 1 1

)

The utilization of each task on the processors is shown in

Task-Utilization matrix U4×2 as below.

U4×2 =

⎛
⎜⎜⎝
0.6 0.5
0.4 0.8
0.7 0.6
0.3 0.1

⎞
⎟⎟⎠

According to the application selection criteria (9), the value

of ci for application α1 and α2 is c1 = 100 and c2 = 40,

respectively. Therefore, application α1 is selected, and by

using task deployment Algorithm 1, we deploy task τ1 and

τ2 to processor π2 and π1, respectively.

When application α2 is selected, we cannot deploy its

task τ3 to either of the processors because of the utilization

constraint. Therefore, in this case, only application α1 is

supported by the system, and the overall system value is 115.

However, when we consider application α2, if we allow its

tasks and α1’s tasks to be re-deployed together, i.e., consider

to task τ1, τ2, τ3, and τ4 together as the input task set to

Algorithm 1, then task τ3 will be the first to be deployed

because it has the maximum minimum utilization demand, i.e.,

0.6, and it is deployed processor π2. Task τ1 is then selected

because it has the maximum minimum utilization demand in

the remaining tasks. Similarly, task τ2 to processor π1 and task

τ4 to processor π2.

In this case, all four tasks can be successfully deployed to

the processors, application α1 and α2 are supported and the

overall system value is 115 + 34 = 149, which is larger than

the previous case.

�
From Example 4, we can see that when deploying a

newly selected application’s tasks, if we mix new tasks with

previously deployed tasks and deploy them as a whole, the

chance that the selected application’s tasks can be successfully

deployed to the processors increases. Algorithm 2 shows the

detailed procedure of application selection and task deploy-

ment.

A brief explanation of Algorithm 2 is as follows. Line 1 to

Line 3 initialize the supported application set As, deployed

task set ΓD, and overall system value ν. Line 3 to Line 4

calculate the value of ci for each application, and select the

application with largest ci. When application is selected, its

tasks are combined with previously deployed tasks and input

to Algorithm 1 for deployment (Line 6). If the deployment

is feasible, the overall system value (ν) is increased by vi,
otherwise, we restore the deployment of the previous tasks

(Line 12). The application selection is stopped until all the

applications have been checked.

Algorithm 2 MAX-MIN-MIN BASED APPROACH TO SE-

LECTING APPLICATIONS AND DEPLOYING TASKS

Input: Processor set Π; Application set A; Application value

vector
−→
V m; Task set Γ; Task-Utilization matrix Un×k;

Application-Task matrix Am×n.

Output: overall system value ν.

1: As ← ∅, ΓD ← ∅, ν ← 0
2: while Application set A is not empty do
3: Calculate the value of ci for each application in A by

using (9).

4: Choose the application αi with largest ci.
5: ΓA ← ΓD ∪ Γi

6: Deploy task set ΓA by using Algorithm 1

(ΓA,Π,Un×k).

7: if mapping is feasible then
8: ν ← ν + vi
9: As ← As + {αi}

10: ΓD ← ΓD ∪ Γi

11: else
12: Restore the deployment of tasks of applications in

As.

13: end if
14: end while
15: return ν

Complexity Analysis: For the while loop, the time required

to calculate the value of ci for each application is O(kmn).
As the time complexity of Algorithm 1 is O(kn2). Therefore,

the time complexity of the while loop is O(kn2 + kmn). As

the while loop requires to run m times, the time complexity

of Algorithm 2 is O(kn2m+ knm2).

VI. EXPERIMENT RESULTS

In this section, we conducted three sets of experiments.

The purpose of the first set of experiments is to compare

the computation cost between heuristic approaches and the

CPLEX solver [8]. The second set of experiments is to inves-

tigate the performance of the Max-Min-Min based approach.

In particular, we compare the overall system value obtained

by the Max-Min-Min based approach with the optimal value

obtained by using CPLEX solver, UB [18] based approach,

and Minimum Execution Time (MET) [19] based approach.

The third set of experiments is to investigate how the Max-

Min-Min based approach performs when the system size is

large.

A. Experiment Settings

Based on the utilization constraint (3), we know that when

the system size is decided, i.e., the number of processors,

tasks, and applications is fixed, the feasibility that a set of

tasks can be scheduled on the processors is affected by the

total utilization demand of the task set. If the total utilization

demand of a given application set is larger than the total

computation resources that processor set can provide, some

tasks have to be dropped and hence some applications may not
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be executed. Therefore, in order to compare the performance

of different approaches, we run the test cases with different

utilization demand of the task set.
In our implementation, we use UUnifast algorithm [24] to

generate the utilization demand for each task. For a given

total utilization demand of n tasks U , the UUnifast algorithm

uniformly distributes U to task τi with 0 < ui < U
(1 ≤ i ≤ n) and guarantees U =

∑n
i=1 ui.

When there are k processors, we first obtain the utilization

demand ui for task τi (1 ≤ i ≤ n). We then apply the UUnifast

algorithm again to decide the utilization demand of task τi on

processor πj , i.e., ui,j . Because of processor’s heterogeneity,

some tasks may not be able to execute on certain processors.

To reflect this, for each task τi, we first generate a random

number k0 in the range of [0, 
k×ϕ�], where k is the number

of processors in the system, and ϕ is a real number which is

used to adjust the maximum number of unfeasible processors

for the tasks, and 0 ≤ ϕ ≤ 1. In our experiment, we set

ϕ = 0.3. When k0 is selected, we randomly select k0 number

of processors (Π∞) and set the task τi’s utilization on these

processors to be +∞.
For the rest (k − k0) processors, we apply the UUnifast

algorithm again to decide the utilization demand of task τi on

processor πj where πj /∈ Π∞ within the range of (0, ui×(k−
k0)). This way, the average utilization demand of task τi on

a single processor remains the same, i.e., ui.
For all the sets of experiments, the value of applications is

uniformly distributed from 1 to 200, the number of tasks that

each application has is uniformly chosen from 1 to n (i.e., the

number of tasks), and the tasks for each application are also

randomly selected. In addition, for both UB based approach

and MET based approach, application selection criteria (9) is

used to select the applications.

B. Computational Costs
We first compare the computational costs of different ap-

proaches for solving the application selection and task de-

ployment problem. In particular, for a given set of system

parameters, we apply a commercial linear programming solver

(CPLEX), the proposed Max-Min-Min based approach, the

UB, and the MET based approaches to find appropriate

applications and feasible task deployment, and compare the

time they take to reach a solution.
Table I gives the execution times of different approaches

under different sizes. From Table I we can see that the

execution time of CPLEX solver and its difference from

other approaches increases very quickly when the system size

increases. For instance, when the number of processors is 20,

number of tasks is 80, and the number of applications is 120,

i.e., k = 20, n = 80, and m = 120, the execution time

of CPLEX solver is 6312 seconds, and the execution time of

MET, UB, and Max-Min-Min based approaches is only 0.028,

0.033, and 0.776 seconds, respectively.

C. Optimality of the Max-Min-Min Heuristic
In this set of experiments, we are to investigate the op-

timality of the Max-Min-Min based approach by comparing

TABLE I
RUNNING TIME COMPARISON UNDER DIFFERENT SYSTEM SIZE (k, n,m)

Approaches (5, 20, 30) (10, 40, 60) (15,60,80) (20,80,120)
MET 0.003 0.004 0.010 0.028
UB 0.003 0.004 0.011 0.033

Max-Min-Min 0.012 0.023 0.183 0.776
CPLEX Solver 2.57 68.4 537 6312

the overall system value obtained by the Max-Min-Min based

approach with the optimal value obtained by using CPLEX

solver. We set the system size to k = 10, n = 40, and m = 60,

and the optimality of different approaches is evaluated based

on the ratio between overall system value obtained by different

approaches and the total application value.

Fig. 2. Performance comparison when k = 10, n = 40,m = 60

Fig. 2 shows the performance of different approaches. From

Fig. 2, we can see that the Max-Min-Min based approach

obtains close to optimal overall system value. In addition, the

Max-Min-Min based approach outperforms both UB and MET

based approaches. The maximal difference between Max-Min-

Min based approach and UB based approach is over 48%

when the average utilization demand is 1.4, and for MET

based approach, the maximal difference between Max-Min-

Min based approach is 10% when the average utilization

demand is 1.6.

The reason that Max-Min-Min based approach performs

better than UB and MET based approaches is that for UB

based approach, the task is deployed to minimize the maxi-

mum utilization of the processors. In other words, UB algo-

rithm does not consider the utilization demand of the task

but the total utilization on each processor. Therefore, the

task’s actual utilization demand will be higher comparing with

our Max-Min-Min based approach. For MET based approach,

tasks are randomly selected and allocated to the processors

with minimum utilization demand, while in the Max-Min-Min

based approach, tasks with maximum minimum utilization will

be deployed first so that the probability that all tasks of an

application can be successfully deployed to the processors

increases.
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D. Scalability of the Max-Min-Min Heuristic

For this set of experiments, we investigate the performance

of Max-Min-Min based approach when the system size be-

comes large. In particular, we set the number of processors to

30, the number of tasks to 120, and number of applications to

180. That is k = 30, n = 120, and m = 180.

From Fig. 3, we can observe that Max-Min-Min based

approach performs better than both UB based approach and

MET based approach when the system size is large. For

instance, when the average utilization demand of the task set

on a single processor is 1.6, the overall system value ratio

obtained by using Max-Min-Min algorithm is larger than MET

based approach and UB based approach by 42% and 73%,

respectively.

Fig. 3. Performance comparison when k = 30, n = 120,m = 180

From the three sets of experiments, we can conclude that

the proposed Max-Min-Min based approach provides close

to optimal solution for the overall system value optimization

problem, but with much less computation cost and it outper-

forms other heuristic approaches existed in the literature.

VII. CONCLUSION

In this paper, we have investigated the problem of obtaining

maximized overall system value under resource constraints.

The uniqueness of the problem lies in that different applica-

tions may share tasks; while most research in the literature

assumes that applications are independent. We have presented

a heuristic approach that takes task sharing into consideration

when deciding which applications to support and how to

deploy the associated tasks to heterogeneous processors. The

simulation results show the good performance of the proposed

approach. In this paper, although we have considered the

situation where applications may share tasks, we assume tasks

are independent. We are to extend the work to the area when

there are dependencies among tasks.
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