
FOCLASA 2008

Coordinating Asynchronous and Open Distributed
Systems under Semiring-Based Timing Constraints

Yue Yu, Shangping Ren1

Illinois Institute of Technology
Chicago, IL 60616, USA

Carolyn Talcott2

SRI International
Menlo Park, CA 94025, USA

Abstract

For asynchronous and open distributed systems, dynamicity, openness, and stringent quality of service requirements post
great challenges to model and develop such systems. The Actor-Role-Coordinator (ARC) model was previously proposed
to address these challenges. The role concept in the model attends to the dynamicity and openness issues by providing
abstractions of actor behaviors. In this paper, we focus on coordinating actors and roles through message manipulations
based on synchronous event-based timing constraints. In addition, different types of timing constraints are generalized into
a semiring-based constraint structure; and the all-pairs extremal paths algorithm on closed semirings is applied to derive the
most stringent constraints which are logical implications ofthe original set of constraints. The derived implicit constraints
are further used to test constraint inclusions and decide intersections between feasible regions of timing constraint sets. The
integration of the ARC model and the semiring-based timing constraint models is prototyped through Maude, a rewriting
logic language. We further use the approach to solve the Restaurant for Dining Philosophers problem and illustrate the
expressiveness of the ARC and the semiring-based timing constraint models for exogenous and composable coordination of
open systems.

Keywords: Coordination model, timing constraint model, ARC, Maude

1 Introduction

The proliferation of embedded devices and significant advances of wireless network tech-
nologies have led to new applications that involve an increasinglylargenumber ofdynam-
ically changingsystems of objects interactingasynchorously. These objects oftentimes
must together satisfy multiple types ofQuality-of-Service(QoS) requirements. As such,
the need for a new paradigm to reduce the complexity and ease the development of these
applications is growing.

Viewing asynchronous and open distributed applications as compositions ofcoordina-
tion and concurrent computation decouples the two concerns and allows higher levels of

1 Email: {yyu8,ren}@iit.edu
2 Email: clt@cs.stanford.edu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:yyu8,ren@iit.edu
mailto:clt@cs.stanford.edu

Yu, Ren, and Talcott

abstraction. However, these advantages can only be fully realized if the following two
fundamental requirements are met. First, it is essential to have a coordinationmodel that
focuses on coordination under constraints, and is decentralized, exogenous, scalable, and
able to handle dynamic concurrent computation without itself being dynamic. Second, in
order to reason about constraints, a formal model that can uniformly represent these differ-
ent types of constraints must be provided.

Our earlier research on coordination models has resulted in a layered coordination
model, the Actor-Role-Coordinator (ARC) model [26], which specifically targets for the
first need. This paper is to address the second requirement listed above.

1.1 Related Work

Coordination is an important paradigm for asynchronous and open distributed applications.
A wide spectrum of coordination strategies have been proposed to capture the functional
aspects of these applications. In the landmark survey [24], Papadopoulos et al. conclude
that coordination models can be classified into two categories, data-drivenand control-
driven. Linda [16] and its mobile extension, Lime [25], KLAIM [13] and its stochastic
extension [14] represent the data-driven category; while the IWIM or Manifold [2] presents
a control-driven or “exogenous” category. Tuple center [21] and ReSpecT [20] provide a
hybrid view.

Control-driven models isolate coordination by considering functional entities as black
boxes. For example, the Abstract Behavior Type (ABT) model [4] and its language Reo [3]
extend the IWIM by treating both computation and coordination components as compos-
able ABTs. The emphasis in Reo is on the connectors, and the coordination and com-
munication patterns which they impose on the components, but not on the components
which are the entities being coordinated (coordinatees). Moreover, specifications of timing
constraints are supported in the Timed Data Stream (TDS) semantics of Reo. Some control-
driven models, such as TuCSoN with ACC [22], CoLaS [11], and ROAD [10], address the
scalability issues of open distributed systems through the concept of groups.

The ARC model [26] partitions coordination into two disjoint categories, i.e.,intra-
role and inter-role coordination, and uses roles and coordinators, respectively, to abstract
these behaviors (see Section2). The coordinatees in the ARC model are actors [1] which
are computational entities that interact by asynchronous message exchange. Coordination
in ARC is achieved through exogenous message manipulations inspaceand time (con-
straining message destination and dispatch time) which are transparent to the coordinated
actors. Our earlier paper [28] gives detailed comparison of the ARC model with the Reo,
the Reflect Russian Dolls (RRD) [18], and other coordination models.

While spatial manipulations of messages are carried out by roles rerouting messages
to destinations based on role policies [26], a formal model to specify and verify temporal
manipulations of messages is presented in this paper.

Incorporating the notion of time into coordination models is not new. Papadopou-
los [23] combines IWIM with the work on timed concurrent constraint programming [27];
and several extensions of Linda with different notions of time are introduced in [17]. This
paper differs from previous work in that we provide a higher abstraction of timing require-
ment that does not depend on any specific type of timing constraints. Semirings have been
proposed as a framework for generalizing, composing, and relating quality of service con-

2

Yu, Ren, and Talcott

straints [6,12]; and it has been shown to be applicable to component-based models [7,29]
where weights on connectors (representing QoS constraints) as well astheir compositions
are modeled by semirings. Therefore, it is quite natural to abstract different types of tim-
ing constraints through semirings. In this paper, we use constraint semirings to generalize
timing constraints; and more importantly, we study the properties of the feasible region
allowed by a set of semiring-based timing constraints. Algorithms for solving extremal
path problems in directed graphs based on closed semirings [15] allow us to derive implicit
timing constraints in a general form. Such implicit constraints are crucial in comparing the
feasible regions of semiring-based timing constraints.

1.2 Main Contributions

The main contributions of this paper are twofold. Firstly, coordination constraints are
mapped into semiring-based timing constraints and their effects on actor computations are
studied. Linear programming duality of the shortest path problem allows us to give neces-
sary and sufficient conditions for the inclusion relation between feasible regions of timing
constraint sets in the real-time case. Formal proofs of the main properties (Lemma3.2and
Theorem3.3) are given in the appendices. The result is further generalized to semiring-
based timing constraints based on morphisms between semirings. Secondly, theARC
model and the semiring-based timing constraints are integrated through the Maude [9] spec-
ification language for exogenous and composable coordination of open systems. We use a
canonical open distributed system example, the Restaurant for Dining Philosophers [8], to
illustrate such integration.

1.3 Road Map

The rest of this paper is organized as follows: for self-containment, Section 2 gives a brief
description of the ARC model. A detailed description of the ARC model can be found
in [26,28]. Section3 discusses semiring-based timing constraints and their properties. Sec-
tion 4 presents a specification of the ARC model and semiring-based timing constraints in
Maude and gives an example to show how such a formal specification facilitates reasoning
about coordination properties. Finally, we conclude in Section5.

2 The Actor-Role-Coordinator Model

The Actor-Role-Coordinator (ARC) model [26,28] is a role-based coordination model in
which a role is a static abstraction for a set of behaviors that the underlyingactors share.
The actor model [1] is used to model the distributed system’s underlying computation. The
functionality of the role is to coordinate its members. This type of coordination is called
intra-role coordination. The intra-role coordination is achieved through policy-based mes-
sage rerouting and reordering among actors within the same role. Coordination among
different roles, i.e., inter-role coordination, on the other hand, is done by coordinators. Co-
ordinators constrain roles’ coordination behaviors which eventually affects message dis-
patch time and destination. However, actors and coordinators are transparent to each other.
Hence, the dynamicity inherent in an actor system are hidden from the coordinators. Fur-
thermore, as individual actors are grouped by roles based on their behaviors, coordination
becomes much more scalable in systems of large scale. Figure1 depicts the ARC model.

3

Yu, Ren, and Talcott

Fig. 1. The Actor-Role-Coordinator Model

From a coordinatee’s perspective, coordination is exogenous and is distributed among
roles and coordinators. In the same way as actors react to messages, roles and coordina-
tors react to events. Both computation entities (actors) and coordination entities (roles and
coordinators) emit events when their public states change. Based on observed events and
the coordination invariants it is to maintain, a role not only makes decisions concerning
its membership, but also makes decisions on message delivery time and location within
the member set. The coordination is a composition of intra-role policies and inter-role
constraints. The inter-role constraints are stored in distributed coordinators. If a role is
constrained by multiple coordinators, the conjunction of the constraints fromdifferent co-
ordinators must be satisfied. A similar situation exists for roles if an actor belongs to mul-
tiple roles. Partitioning the set of actors and minimizing the overlap of constraintsbetween
coordinators can reduce the complexity of an ARC system.

In the ARC model, the representation of constraints is built upon events whichcorre-
spond to message dispatches. As an illustrative example, consider a sensor system consist-
ing of three sensors and a decision unit that aggregates data sensed from the three sensors
(e.g., by certain voting mechanisms). Clearly, the event that the decision unitaggregates
the data must happenafter the events that raw data from the three sensors are provided.
Moreover, if we have consistency requirements on the data provided by the three sensors,
we may constrain thedifferencesbetween the occurrence times of the events that sensors
provide their data (see Example3.1 for detail). More specifically, we can treat precedence
constraints and real-time constraints as coordination policies that enforce the following:

Precedence Constraints: Consider a distributed system with a set of observable events
E. Precedence constraints of the formei ≺ ej (ei, ej ∈ E) restrict the occurrence ofei to
precede the occurrence ofej .

Real-Time Constraints: Consider a real-time system with a set of observable events
E. Timing constraints of the formt(ei) − t(ej) ≤ d (ei, ej ∈ E andd ∈ ℜ+ ∪ {+∞})

restrict eventei to occur no later thand time units after eventej occurs.
Although temporal constraints and constraint satisfaction are studied extensively in the

real-time community, such studies are from resource (such as processors) schedulability
perspectives and have focused on specific types of constraints, rather than from program-
ming language and constraint model perspectives.

Furthermore, as coordination constraints in the ARC model are distributed among co-
ordinators and roles and these constraints are conjunctively applied on actors being con-
strained, it is essential that we have a uniform way to compose different sets of constraints
and later be able to formally reason about the compositions and satisfiability.

4

Yu, Ren, and Talcott

3 The Semiring-Based Timing Constraint Models and Their Fea-
sible Region Inclusions

As discussed in previous sections, coordination constraints can be distributed, but need to
be conjunctively applied to the actors being constrained; thus for a pair ofevents, there can
be multiple types of constraints imposed on them. For overlapping constraints, there often
exists an implicit constraint derivable from the given constraint set that isa tighter con-
straint on the event pair than any of the explicitly specified ones. However, the existence
of different constraint types complicates the derivation of implicit constraints. In this sec-
tion, we unify precedence and real-time constraints in a semiring-based timing constraint
model, utilize the all-pairs extremal paths algorithm on closed semirings to derivemost
stringent implicit constraints, and develop theories (inclusions and intersections) regarding
the feasible regions of semiring-based timing constraints.

3.1 Semiring-Based Timing Constraints

Constraint semirings have been proposed as a framework for unifying QoS constraints [6].
A constraint semiringS is a tuple(〈A,⊕,⊗,0,1〉 ,≤S) whereA is the carrier set and
0,1 ∈ A; ⊕ is commutative, associative, idempotent, and has0 as its unit;⊗ is commu-
tative, associative, distributes over⊕, and has1 as its unit element and0 as its absorbing
element; and≤S is a partial order induced by the idempotence of the⊕ operation, i.e.,
∀a, b ∈ A : a ≤S b iff a ⊕ b = b. 0 is the minimum element of≤S and1 is the maximum
element of≤S . The application of the framework in constraining transitions between states
of a system or connectors between components can be found in [7] and [29], respectively.
The following is an example of applying constraint semirings in coordinating actors.

Example 3.1 In the sensor system mentioned in Section2, we assume that the correspond-
ing events of the three sensor actors sending their data aree1, e2, ande3, respectively. To
guarantee the consistency of the votes, we constrain the differences between the occurrence
times of the three eventst(e1), t(e2), andt(e3) to be within certain ranges using real-time
constraints as discussed above. The constraint set and its corresponding constraint matrix
are given in (1) {

t(e1) − t(e2) ≤ 6, t(e2) − t(e1) ≤ 6,

t(e1) − t(e3) ≤ 7, t(e3) − t(e1) ≤ 3,

t(e2) − t(e3) ≤ 9, t(e3) − t(e2) ≤ 14

}
; D(0) =

[
0 6 7

6 0 9

3 14 0

]
(1)

whereD(0) is the constraint matrix indexed by the subscripts of events. For instance,
because of the constraintt(e1) − t(e2) ≤ 6, we haved(0)

1,2 = 6 in D(0). The construction

of D(0) is given in (2). The constraint set can also be represented as a weighted directed
constraint graph as shown in Fig.2(a), from which implicit constraints can be derived by the
Floyd-Warshall all-pairs shortest paths algorithm. Intuitively, in the givenconstraint set, the
constraintst(e3) − t(e1) ≤ 3 andt(e1) − t(e2) ≤ 6 imply the constraintt(e3) − t(e2) ≤

3 + 6 = 9. Furthermore, this implied constraint is applied on the same pair of events
as the constraintt(e3) − t(e2) ≤ 14, hence we havet(e3) − t(e2) ≤ min(14, 9) = 9.
Real-time constraints in this example can be naturally mapped into a constraint semiring
(〈ℜ+ ∪ {+∞}, min, +, +∞, 0〉 ,≥), whereℜ+ ∪ {+∞} is the set of constraint values,
min is used for parallel composition of two constraints in which both constrained events
coincide; and+ is used for sequential composition of two constraints where there is a

5

Yu, Ren, and Talcott

(a) (b) (c) (d)

Fig. 2. Timing and precedence constraint graphs.

common event in both constraints differing in their signs. The+∞ represents that(ei, ej)

is not constrained3 , while 0 represents the most stringent constraint. The ordering relation
≥ on ℜ+ ∪ {+∞} indicates the stringency of constraints,a, b ∈ ℜ+ ∪ {+∞} : a ≥

b ⇔ a ≤S b, i.e., the smaller the constraint value, the more stringent the constraint. In
other words, we say the constraintt(e1) − t(e2) ≤ b is more stringent than the constraint
t(e1) − t(e2) ≤ a if a ≥ b (or a ≤S b). 2

Similarly, the constraint semiring(〈{true, false} ,∨,∧, false, true〉 ,≤S), in which
false ≤S true, can represent precedence constraints. Fig.2(c) and2(d) are examples of
two different sets of precedence constraints, where the corresponding entry in the constraint
matrix istrue if and only if ei ≺ ej (represented asei −→ ej in the figures) ori = j.

Given a set of initial constraints coming from different coordinators, it isimportant to
know the implications of constraint compositions, i.e., theimplicit constraints derivable
from the given constraint sets. There are two scenarios that a new implicitconstraint may
arise, i.e., two given constraints are on the same pair of events (parallel edges in the con-
straint graph), or there is a common event in both constraints with differentsigns (connected
edges in the constraint graph). These two scenarios corresponds to constraint parallel and
sequential composition, respectively. The⊕ and⊗ operations of a semiring〈A,⊕,⊗,0,1〉

are used for these operations accordingly. Under this model, the extremalpaths algorithm
on closed semirings4 [15] can be directly applied to derive implicit constraints between
all pairs of constrained events (AppendixA), where the initial matrixD(0) on the set of
external observablesei, i = 1, . . . , n is given as5

d
(0)
i,j =

{
the maximum element of≤S if i = j

the constraint value of(ei, ej) if i 6= j and(ei, ej) is constrained

the minimum element of≤S if i 6= j and(ei, ej) is not constrained
(2)

d
(n)
i,j is the transitive closure of path lengthn between eventei andej in the corresponding

constraint graph and hence is the most stringent constraint (with respect to ≤S on the spe-
cific semiring) between eventsei andej derivable from the original set of constraints. We
denote the all-pairs extremal paths matrix byD∗.

For instance, in Example3.1, the Floyd-Warshall algorithm for deriving implicit real-
time constraint is a special case of Algorithm1 (AppendixA) with ⊕ and⊗ replaced by
min and+, respectively; andd(0)

i,i , i = 1, . . . , n, are set to0, the unit of+, and all the

3 Constraints have directions. Therefore, the fact that(ei, ej) is not constrained does not imply that(ej , ei) is not con-
strained.
4 A closed semiring requires that⊕ and⊗ are closed overA. As a counterexample,〈ℜ ∪ {+∞}, min, +, +∞, 0〉 is not
closed since the summation of an infinite number of negative elements results in−∞ which is not an element ofℜ∪{+∞}.
〈ℜ ∪ {+∞,−∞}, min, +, +∞, 0〉 is also problematic as the unit element ofmin, i.e.,+∞ , is no longer the absorbing
element of+, violating the definition of a semiring. In these cases, Algorithm 1 will not work.
5 Without loss of generality, we assume that there is at most one constraint over each pair of events. If there are multiple
constraints on an event pair(ei, ej), one can choose the most stringent constraint using the≤S operation and drop the
others.

6

Yu, Ren, and Talcott

other unconstrained entries are set to+∞, the unit ofmin. Therefore, the most stringent
constraints between all-pairs of events are given below:{

t(e1) − t(e2) ≤ 6, t(e2) − t(e1) ≤ 6,

t(e1) − t(e3) ≤ 7, t(e3) − t(e1) ≤ 3,

t(e2) − t(e3) ≤ 9, t(e3) − t(e2) ≤ 9

}
; D∗ = D(3) =

[
0 6 7

6 0 9

3 9 0

]
(3)

3.2 Feasible Regions of Semiring-Based Timing Constraint Sets

Coordination constraints eliminate otherwise possible computations of a system. Given
two different sets of constraintsC andC ′. By showing that the computations allowed byC

include those allowed byC ′, we avoid repeatedly checking computations against different
coordination constraint sets. For instance, consider the two sets of precedence constraints
as shown in Fig.2(c) and2(d), whereei −→ ej indicates thatei ≺ ej . Fig. 2(c) allows a
trace setTc = {e1e3e2e4, e1e3e4e2, e3e1e2e4, e3e1e4e2, e3e4e1e2}

6 ; and Fig.2(d) allows
a trace setTd = {e1e3e2e4, e3e1e2e4}. Clearly, Td ⊆ Tc. Therefore, if constraints in
Fig. 2(c) result in message delivery orders that guarantee safety requirements,Fig. 2(d)
will also guarantee the same properties.

Similarly, the timed trace of a real-time computation can be represented as atimed data
stream7 [5]. The set of all timed data streams satisfying a given set of real-time constraints
is a convex set and we call the set thefeasible region(of the set of real-time constraints)
throughout the paper. For example, the feasible region of the set of real-time constraints
given in (1) is illustrated in Fig.3(a), with its boundaries marked as bold lines.

(a) The feasible region of constraint set (1). (b) Inclusion of two feasible regions.

Fig. 3. Feasible region and feasible region inclusion. As can be seen from Fig.3(a), each plane representing a constraint is
parallel to the vectorz = (−1)x1 +(−1)x2 +(−1)x3, where vectorsx1, x2, andx3 indicate time axes of eventse1, e2,
ande3, respectively. Therefore, to facilitate the discussion offeasible region inclusion, we view the space in the direction of
z in Fig. 3(b). We can see that the feasible region of constraint set (1) (gray bold lines) includes that of (4) (black light lines).

Now, consider another set of real-time constraints given in (4){
t(e1) − t(e2) ≤ 5, t(e2) − t(e1) ≤ 3,

t(e1) − t(e3) ≤ 5, t(e3) − t(e1) ≤ 2,

t(e2) − t(e3) ≤ 15

}
; D′(0) =

[
0 5 5

3 0 15

2 +∞ 0

]
(4)

6 Due to the synchronous event-based control mechanism of the ARC model mentioned in Section2 and detailed in Sec-
tion 4, event orders will indicate the corresponding message delivery orders. Also note that although we constrain only a
predefined finite set of events, the complete trace with all events can be formed by permutating unconstrained events and the
inclusion relation still holds. Moreover, given that the system is stabilized, such finite set of constrained events is obtainable.
7 A timed data stream over an event setE is a pair(a, α) wherea is a sequence with elements fromE andα is a monoton-
ically increasing sequence with elements fromℜ+ ∪ {+∞}.

7

Yu, Ren, and Talcott

The feasible region of the constraint set (4) can be shown to be included within that of
(1) as illustrated in Fig.3(b). Lemma3.2, together with Theorem3.3, shows that all-pairs
shortest paths matrices of real-time constraint sets can be used for such comparison.

Lemma 3.2 The feasible region of a set of real-time constraints does not change when
constraints between all event pairs are replaced by implicit constraints derived from Algo-
rithm 1 (AppendixA).

Proof: The formal proof is given in AppendixB. 2

For instance, the feasible region of (1) does not change when the constraintt(e3) −

t(e2) ≤ 14 is changed tot(e3) − t(e2) ≤ 9.

Theorem 3.3 Given two sets of real-time constraintsC andC ′ on the same set of events8 .
Let their corresponding most stringent implicit constraint matrices (i.e., all-pairs shortest
paths matrices) beD∗ andD′∗, respectively. The feasible region ofC ′ is included within
that of C if and only ifD∗ ≥ D′∗(∀i, j : d∗i,j ≥ d′∗i,j) where≥ is the ordering relation
defined on the semiring(〈ℜ+ ∪ {+∞}, min, +, +∞, 0〉,≥).

Proof: The formal proof is given in AppendixC. 2

This result can be easily extended to precedence constraints due to the following injec-
tion

(〈{true, false} ,∨,∧, false, true〉 ,≤S)

f(true)=0
f(false)=+∞

7−→

(〈ℜ+ ∪ {+∞}, min, +, +∞, 0〉,≥)

(5)

For example, the transitive closure matrices of the two sets of precedence constraints in
Fig. 2(c)and2(d)are

D∗ =




true true false false

false true false false

false true true true

false false false true


 andD′∗ =




true true false true

false true false true

false true true true

false false false true


 (6)

respectively, whered∗i,j or d′∗i,j is false if and only if i 6= j and ei does not precede
ej . Based on the ordering relation on(〈{true, false} ,∨,∧, false, true〉 ,≤S), we have
D∗ ≤S D′∗ and thus the inclusion relation observed at the beginning of this section fol-
lows. For general semiring-based timing constraints, inclusion relations canbe tested by

(i) applying Algorithm1 with specific constraint semirings to get all-pairs extremal paths
matrices of constraint sets; and

(ii) using the ordering relation≤S on the constraint semiring to determine the dominant
relationship between the all-pairs extremal paths matrices.

From Lemma3.2, similar results can be given forintersectionsbetween feasible regions
of timing constraint sets. An intersection of two constraint sets (not necessarily on the same
set of events) can be used for deriving a constraint set that satisfiesboth sets of constraints.
Such intersections are derived by forming the union of the constraint setsand applying
Algorithm 1 with the corresponding constraint semirings. As the intersection of convex
sets is still convex, similar proofs can be developed.

8 Note that the event sets of the two constraint sets need not bethe same in order for the two trace sets to be comparable.
One can always extend both event sets to the same one by adding unconstrained events.

8

Yu, Ren, and Talcott

4 Integration of the ARC and Semiring-Based Timing Constraint
Models through Maude

In this section, we use a canonical open system example,the Restaurant for Dining Philoso-
phers[8], to illustrate the expressiveness of the ARC model and the integration of theARC
and the semiring-based timing constraint models.

Example 4.1 The Restaurant for Dining Philosophers: A restaurant has one table with
n forks andn seats. Customers in the restaurant arem (m > n) philosophers who can be
seated if there are free seats, and can stand up freeing the seat at anytime if they have no
fork. When seated, a philosopher eats if (s)he can grab two forks, otherwise (s)he thinks9 .

It is worth pointing out that the problem differs from the classical dining philosopher
problem in that philosophers can freely join or leave the table at any time and hence in-
troducing dynamicity and openness into the system. In addition, multiple constraints may
co-exist. For example, constraints that avoid deadlock and constraints that give preferences
to particular seats so that philosophers being seated there will always eatfirst.

The problem can be naturally expressed using the ARC model. More specifically, under
the ARC model, philosophers and forks are actors. Two types of roles, i.e., seat roles and
fork roles, are introduced to shield dynamicity from coordinators:n seat roles andn fork
roles are circularly arranged as in the original problem of dining philosophers. Philosopher
and fork actors can join and leave corresponding roles at any time. However, any role can
only hold at most one actor at any instance of time. To simplify the presentation while
still maintaining consistency of the model, we assume that fork actors are static,i.e., each
fork role holds a fork actor and the membership does not change. On the other hand, the
seat role’s membership is dynamic in that its member philosopher changes frequently10 .
Multiple coordinators are introduced to impose coordination constraints on theroles so that
properties such as deadlock free and preferences can be enforced.

In the remainder of this section, we detail the solution of the Restaurant for Dining
Philosophers problem using the ARC model integrated with the semiring-basedtiming con-
straints. We use Maude [9], a tool that is well suited for specifying and verifying distributed
systems, to write the specification and validate deadlock-free and preference properties.

4.1 Actors in Maude

In Maude, distributed system states are modeled as multisets (configurations)of actors and
messages [9]. Configurations are formed by multiset union starting from singleton objects
(actors) and messages. This is formalized by the following Maude declaration11

sort Configuration .
subsorts Object Msg < Configuration .
op none : -> Configuration .
op __ : Configuration Configuration -> Configuration [ctor assoc comm id: none] .

9 The requirement thatm > n is from the original problem in [8]. However, as will be seen, it is not to say that the table
should be full before philosophers are allowed to eat, sincethe precedence constraints that avoid deadlock can in fact be fully
distributed to each philosopher. However, inter-philosopher constraints, such as the preference constraints we introduce, may
prevent certain philosophers in low priority seats from eating if the table is not full. But this does not cause livelock because
philosophers are always free to move to the seat with higher priorities.
10Although each role has at most one member at any given time in this example, oftentimes, a role may have multiple actors.
11 In Maude,sorts are used to declare types, thesubsort relation on sorts parallels the subset relation on the sets of
elements in the intended model of these sorts, an operator is declared with the keywordop, andassoc, comm, andid can
be declared to specify equational axioms to denote associativity, commutativity, and identity, respectively. Also note that
Object is used to represent actors throughout this paper.

9

Yu, Ren, and Talcott

A typical actor system configuration has the form
[actor_1] ... [actor_m] msg_1 ... msg_n

Each actor has anid, a set ofattributes, andin andout queues for buffering
incoming and outgoing messages. In other words, an actor object has the form
[id : cid | attributes | in: inQ, out: outQ]

In actor systems, the message order is not specified and a message can bedeliveredat
any timeas long as its target matches a receiving actor as shown in the following rewrite
rule (rl) for message delivery
rl[in] :

[id : cid | attributes | in: inQ, out: outQ] msg(id, id’, cv) =>
[id : cid | attributes | in: (inQ, msg(id, id’, cv)), out: outQ] .

Similarly, the following rewriting rule states that a message is sent when it is at thehead
of an actor’s output queue.
rl[out] :

[id : cid | attributes | in: inQ, out: (msg(id’, id, cv), outQ)] =>
[id : cid | attributes | in: inQ, out: outQ] msg(id’, id, cv) .

Without coordination constraints, the initial configuration of the restaurantfor dining
philosophers system in Maude is the following
[o("p-i"): Phil | status: 1, R:(o("f-i"), 0), L:(o("f-j"), 0) | in: nil, out: nil]
[o("f-i"): Fork | acquired?: false | in: nil, out: nil]

wherei = 1, . . . , n, andj = i + 1 if i 6= n and1 if i = n. A philosopher’sstatus
indicates if (s)he is waiting to be seated (0), seated and thinking (1), waiting for both forks
(2), or eating (3); and attributes inR/L indicate the philosopher’s right/left fork actor’sid
and current status of the fork (0 for “no request sent”,1 for “request message sent”,2 for
“fork acquired”, and3 for “release message sent”), respectively.

It is clear that in the above specification, the openness and dynamicity are not supported
as philosopher actors need to explicitly know the names of their left and rightfork actors.
Therefore, if philosophers are allowed to leave, join, or move, they will not know the correct
fork actors to send the request or release messages. Moreover, a deadlock configuration
such as the following (whenm = n = 3)
[o("p1"): Phil | status: 2, R:(o("f1"), 2), L:(o("f2"), 1) | in: nil, out: nil]
[o("p2"): Phil | status: 2, R:(o("f2"), 2), L:(o("f3"), 1) | in: nil, out: nil]
[o("p3"): Phil | status: 2, R:(o("f3"), 2), L:(o("f1"), 1) | in: nil, out: nil]
[o("f1"): Fork | acquired?: true | in: (msg(o("f1"),o("p2"),"request")), out: nil]
[o("f2"): Fork | acquired?: true | in: (msg(o("f2"),o("p3"),"request")), out: nil]
[o("f3"): Fork | acquired?: true | in: (msg(o("f3"),o("p1"),"request")), out: nil]

can be reached wherep1 holdsf1 requesting forf2, p2 holdsf2 requesting forf3,
andp3 holdsf3 requesting forf1. In Maude, deadlock configurations can be found by
thesearch command. Hence, a level of abstraction is needed to allow dynamicity and
coordination constraints are necessary in order to avoid deadlock.

4.2 Roles in Maude

Roles are modeled in Maude as a special case of the Reflective Russian Doll (RRD) [18]
model in which distributed states are nested and can be seen as a distributed soup of soups
instead of a flat soup of actors and messages. The two level nested configuration, in the
ARC case, consists of roles (meta-level objects) and role messages (meta-level messages)
with roles’ configurations consisting of coordinated actors (base-levelobjects) and actor
messages (base-level messages). A role has the form
[rid : cid | attributes, {configuration} | in: inQ, out: outQ]

whereconfiguration is a flat soup of actors and messages. There are three primitives
defined in a role, i.e.,membership-change, up, anddown; and their corresponding

10

Yu, Ren, and Talcott

conditional rewrite rules (crl) are presented informally as following
• crl[membership-change] guarantees that each actor may play one and only one

role at any time. In order for an actor to change its role membership, itleaves a roleR
(causing changes in the state ofR), becomes an actor with another behavior (causing
changes in the state of itself), andjoins another roleR′(causing changes in the state
of R′). Theleave, become, andjoin operations must be done atomically to avoid
dangling actors.

Ratts1
Aatts3

R′

atts2
=⇒ Ratts4

Aatts6
R′

atts5

↓leave join ↑

Ratts4
Aatts3

R′

atts2

become
−→ Ratts4

Aatts6
R′

atts2

• crl[up] addresses theopennessissue: it extracts a message from the configuration in
a role to the role’s output queue. Since actors are sometimes anonymous to each other in
open systems, a role is responsible for rerouting a message sent by an actor under it to a
proper destination role.

• crl[down] addresses theintra-role coordinationissue: it dequeues a message from
a role’s input queue and puts it into the role’s configuration. Since actorsunder a role
share common behaviors and also have diversities, a role is responsible for choosing a
proper actor or proper actors for processing the message sent to it.

The specific policies for rerouting messages used incrl[up] andcrl[down] should
be defined in the specific role instances. When roles are added, coordination is based on
roles rather than based on specific actors.

In the Restaurant for Dining Philosophers problem, roles can be used to model “seats of
philosophers” to address openness and dynamicity since “seats” are stable. Now, the initial
configuration for the system becomes
[o("default"): DefaultRole | {

[o("p-k"): Phil | status: 0, R:(o("n/a"), 0), L:(o("n/a"), 0) | ...]
} | ...]
[o("S-i"): SeatRole | occupied: false, R: o("F-i"), L: o("F-j"), { none } | ...]
[o("F-i"): ForkRole | { [o("f-i"): Fork | acquired?: false | ...] } | ...]

wherei = 1, . . . , n, j = i + 1 if i 6= n and1 if i = n, k = 1, . . . , m and every oc-
currence of “in: nil, out: nil” is replaced with “...” for simplicity. The
DefaultRole contains actors waiting to be seated (status:0). Theatomicrole mem-
bership change rulecrl[membership-change] as well asbecome of aPhil, join
of aSeatRole, andleave of aDefaultRole ensure that when a philosopher changes
its status to 1 (thinking), it can be seated in someSeatRole as long as the role’s
occupied attribute isfalse (which changes totrue atomically); and the mechanism
for a philosopher to leave a seat is similar. Also note that a philosopher now does not need to
know its left and right forks;SeatRole will reroute a message to the correctForkRole
based on itsR andL attributes. For example,msg(o("n/a"),o("p1"),"request")
in the actor level soup will be rerouted asmsg(o("F1"),o("S1"),"request") in
the role level soup. TheSeatRole records the necessary information to handle the re-
ply messages. As can be seen, the openness and dynamicity issues are solved using roles
without any changes of the original actors defined.

11

Yu, Ren, and Talcott

4.3 Coordinators with Semiring-Based Timing Constraints in Maude

In the Restaurant for Dining Philosophers problem, we also need constraints that avoid
deadlock and achieve preference requirements. A classic solution that avoids deadlock
is to break the symmetry by having each philosopher first grab a fork with thelower
number. This can be done by restrictingmsg(o("S1"),o("F1"),"available")
(o("F1")’s reply to msg(o("F1"),o("S1"),"request") if o("F1") has not
been acquired) to be delivered beforemsg(o("F2"),o("S1"),"request").

Furthermore, a preference constraint that favors the philosopher sitting in o("S1")
can be enforced by restricting"available" messages too("S1") delivered before
"request" messages from all the otherSeatRoles. In the following, we discuss how
constraints are enforced through exogenous event-based message controls by coordinators.

4.3.1 Semiring-Based Timing Constraints in Maude
In Maude, the concept of semiring is defined as a functional theory [9] and Algorithm1
(AppendixA) can be defined as a parameterized functional module over a general semiring
wherefmod MATRIX implements Algorithm1 (op APXP).
fmod MATRIX{X :: SEMIRING} is
pr (ARRAY * (sort Entry{X,Y} to Entry{Y}, sort Array{X,Y} to Matrix{Y}))
{IndexPair, X} .
op APXP(_,_) : Matrix{X} Nat -> Matrix{X} .
...... ***omitted due to page limit

endfm

The partial order constraint model can thus be defined as theview from a general
semiring〈A,⊕,⊗,0,1〉 to Boolean algebra〈{false, true} ,∨,∧, false, true〉 by map-
pingA, ⊕, ⊗, 0, and1 to {false, true}, ∨, ∧, false, andtrue, respectively.
view BOOL-SEMIRING from SEMIRING to BOOL is
sort Elt to Bool .
op 1 to term true .
op 0 to term false .
op X:Elt * Y:Elt to term X:Bool and Y:Bool .
op X:Elt + Y:Elt to term X:Bool or Y:Bool .

endv

and the corresponding constraint matrices can be defined by makingfmod MATRIX take
the parameter of the specific semiringBOOL-SEMIRING
fmod BOOL-SEMIRING-MATRIX is
protecting MATRIX{BOOL-SEMIRING} *

(sort Entry{BOOL-SEMIRING} to BoolMatrixEntry,
sort Matrix{BOOL-SEMIRING} to BoolMatrix,
op empty to zeroMatrix) .

endfm

Real-time constraints over〈ℜ+ ∪ {+∞} , min, +, +∞, 0〉 can be defined similarly.

4.3.2 Coordinators in Maude
Without coordination, actors/roles follow the communication mechanismsrl[in] and
rl[out] as in Section4.1. However, with exogenous coordination, the corresponding
eventin(id, id’, cv) or out(id, id’, cv) of a messagemsg(id, id’,
cv) must be synchronously tested against the (presumably unique) coordinator for consis-
tency before it can be delivered to the target actor. For instance, given the timing constraint
model, underpartial order constraints, a coordinator is a quadruple[APXP(M) | eset
| emap | n], whereM is the initial constraint matrix indexed by1 throughn, eset
is the set of indices of events of interest that have occurred (and satisfy the constraints in
M), emap is the mapping from the set of events of interest to the set of indices, andn is
the number of events of interest (also the dimension ofM). Therefore, messages cannot be
delivered freely as inrl[in] when a coordinator is present; instead, in order for a mes-

12

Yu, Ren, and Talcott

sage to be delivered to its target actor, we first need to check if the corresponding event of
message delivery is constrained and deliver the message if it is not.
crl[in-uncoord] :

[id : cid | atts | in: inQ, out: outQ] msg(id, id’, cv) [M | eset | emap | n]
=>
[id : cid | atts | in: (inQ, msg(id, id’, cv)), out: outQ] [M | eset | emap | n]
if emap[in(id, id’, cv)] == undefined .

When the event is constrained, we must check if the event satisfies all constraints inM
crl[in-coord] :

[id : cid | atts | in: inQ, out: outQ] msg(id, id’, cv) [M | eset | emap | n]
=>
[id : cid | atts | in: (inQ, msg(id, id’, cv)), out: outQ]
[M | insert(emap[in(id, id’, cv)], eset) | emap | n]
if (tell([M | eset | emap | n], in(id, id’, cv))) .

whereop tell([M | eset | emap | n], e) decides if all the predecessors of
emap[e] have already occurred (ineset) 12 . The coordination mechanism forout is
defined symmetrically asin.

In the Restaurant for Dining Philosophers problem, to avoid deadlock, weonly need
to put the following coordinator in the soup of roles defined above. This results in the
following initial configuration (whenm = 4 andn = 3)
[APXP([1,2] |-> true ; [3,4] |-> true ; [5,6] |-> true, 6) | empty

| (in(o("S1"), o("F1"), "available")|-> 1, out(o("F2"), o("S1"), "request")|-> 2,
in(o("S2"), o("F2"), "available")|-> 3, out(o("F3"), o("S2"), "request")|-> 4,
in(o("S3"), o("F1"), "available")|-> 5, out(o("F3"), o("S3"), "request")|-> 6)

| 6]

[o("default"): DefaultRole | {
[o("p1"): Phil | status: 0, R:(o("n/a"), 0), L:(o("n/a"), 0) | ...]
[o("p2"): Phil | status: 0, R:(o("n/a"), 0), L:(o("n/a"), 0) | ...]
[o("p3"): Phil | status: 0, R:(o("n/a"), 0), L:(o("n/a"), 0) | ...]
[o("p4"): Phil | status: 0, R:(o("n/a"), 0), L:(o("n/a"), 0) | ...]

} | ...]

[o("S1"): SeatRole | occupied: false, R: o("F1"), L: o("F2"), { none } | ...]
[o("S2"): SeatRole | occupied: false, R: o("F2"), L: o("F3"), { none } | ...]
[o("S3"): SeatRole | occupied: false, R: o("F3"), L: o("F1"), { none } | ...]
[o("F1"): ForkRole | { [o("f1"): Fork | acquired?: false | ...] } | ...]
[o("F2"): ForkRole | { [o("f2"): Fork | acquired?: false | ...] } | ...]
[o("F3"): ForkRole | { [o("f3"): Fork | acquired?: false | ...] } | ...]

and thesearch for deadlock configurations in Maude finds no solution, indicating that the
constraints have avoided the deadlock. Moreover, preference constraints can be enforced
through the following coordinator
[APXP([1,2] |-> true ; [3,4] |-> true , 4) | empty

| (in(o("S1"), o("F1"), "available")|-> 1, out(o("F1"), o("S3"), "request")|-> 2,
in(o("S1"), o("F2"), "available")|-> 3, out(o("F2"), o("S2"), "request")|-> 4)

| 4]

and thesearch for configurations where philosophers in seatS2 or S3 eat before the
philosopher in seatS1 finds no solution. Moreover, this coordinator can be combined
with the deadlock-avoidance coordinator by intersecting their constraints as discussed in
Section3. More specifically, the following coordinator
[APXP([1,2] |-> true ; [3,4] |-> true ; [5,6] |-> true ;

[1,9] |-> true ; [7,8] |-> true , 9) | empty
| (in(o("S1"), o("F1"), "available")|-> 1, out(o("F2"), o("S1"), "request")|-> 2,

in(o("S2"), o("F2"), "available")|-> 3, out(o("F3"), o("S2"), "request")|-> 4,
in(o("S3"), o("F1"), "available")|-> 5, out(o("F3"), o("S3"), "request")|-> 6,
in(o("S1"), o("F2"), "available")|-> 7, out(o("F2"), o("S2"), "request")|-> 8,
out(o("F1"), o("S3"), "request") |-> 9)

| 9]

12One can easily extend coordinators to constrain recurring events or event types, as opposed to single events, by adding
sequence numbers to events of the same type in the event historyeset. However, this makes thesearch space infinite
and we restrict our discussion to single events.

13

Yu, Ren, and Talcott

is composed of the two coordinators by forming the intersection of the the two constraint
sets. The trace set of the intersection can be easily shown to be included within trace
sets of both constraint sets based on Theorem3.3. Therefore, we can guarantee that both
the deadlock-free and the preference requirements are met without having to repeatedly
search all possible configurations.

5 Conclusion

This paper presents a continuation of our previous work on the Actor-Role-Coordinator
model for asynchronous open distributed and embedded systems. We focus on the way that
actor or role messages are manipulated exogenously based on precedence and real-time
constraints imposed on their corresponding events. We discuss the important properties of
semiring-based timing constraints that generalize different timing constraint types. More
specifically, we apply the all-pairs extremal paths algorithm on closed semirings to derive
comparable forms of timing constraint sets which allow us to decide inclusions and find
intersections between feasible regions of timing constraint sets. To illustrate the way ex-
ogenous coordinations, i.e., behavior abstractions by roles and computationrestrictions by
coordinators, are imposed on actor systems, we present the ARC solution toa canonical
open system problem, the Restaurant for Dining Philosophers problem. Wespecify and
integrate these coordinating entities through Maude rewriting logic language,and are able
to show that the coordination requirements are met through Maude’s verification tools and
the properties we give for semiring-based timing constraints.

Note that we have not yet applied our theories to systems with real-time constraints;
neither have we presented compositions of different types of constraints. Our future work
thus targets the utilization of the semiring-based timing constraint model in systems with
real-time constraints or different types of constraints. For example, in the Restaurant for
Dining Philosophers problem, a typical real-time constraint could stipulate thatphiloso-
phers release their forks befored time units after they acquire them. However, incor-
porating real-time constraints would require us to prototype the system through Real-
Time Maude [19]. In Real-Time Maude, time is originally modeled as an ordered com-
mutative monoid〈Time, +, 0〉. The inclusion of themin operator and its unitINF in
NAT-TIME-DOMAIN-WITH-INF has made time a semiring, which coincides the con-
straint model we implemented in Section4. Moreover, the inclusion and intersection of
semiring-based timing constraints discussed in Section3 provide us a basis to studysimi-
larities between timing constraints which are important in comparing imprecise systems.

References

[1] Agha, G., I. A. Mason, S. F. Smith and C. L. Talcott,A foundation for actor computation, Journal of Functional
Programming7 (1997), pp. 1–72.

[2] Arbab, F.,IWIM: A communication model for cooperative systems, in: Proceedings of the 2nd International Conference
on the Design of Cooperative Systems, 1996, pp. 567–585.

[3] Arbab, F.,A channel-based coordination model for component composition, Technical report, Centrum voor Wiskunde
en Informatica, Amsterdam (2001).

[4] Arbab, F.,Abstract behavior types: a foundation model for componentsand their composition, Science of Computer
Programming55 (2005), pp. 3–52.

[5] Arbab, F. and J. Rutten,A coinductive calculus of component connectors, in: Proceedings of the 16th International
Workshop on Algebraic Development Techniques, LNCS2755, 2002, pp. 34–55.

14

Yu, Ren, and Talcott

[6] Bistarelli, S., U. Montanari and F. Rossi,Semiring-based constraint satisfaction and optimization, Journal of the ACM
44 (1997), pp. 201–236.

[7] Chothia, T. and J. Kleijn,Q-automata: Modelling the resource usage of concurrent components, in: Proceedings of
the 5th International Workshop on the Foundations of Coordination Languages and Software Architectures (FOCLASA
2006), ENTCS175, 2007, pp. 153–167.

[8] Ciancarini, P.,Coordination languages for open system design, in: Proceedings of the International Conference on
Computer Languages, 1990, pp. 252–260.

[9] Clavel, M., F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer and C. Talcott, “All About Maude: A High-
Performance Logical Framework,” Springer, 2007.

[10] Colman, A. and J. Han,Coordination systems in role-based adaptive software, in: Proceedings of the 7th International
Conference on Coordination Models and Languages, LNCS3454, 2005, pp. 63–78.

[11] Cruz, J.-C. and S. Ducasse,CoLaS: A group based approach for coordinating active objects, in: Proceedings of the 3rd
International Conference on Coordination Languages and Models, LNCS1594, 1999, pp. 355–371.

[12] De Nicola, R., G. L. Ferrari, U. Montanari, R. Pugliese and E. Tuosto,A process calculus for QoS-aware applications,
in: Proceedings of the 7th International Conference on Coordination Models and Languages, 2005, pp. 33–48.

[13] De Nicola, R., G. L. Ferrari and R. Pugliese,KLAIM: a kernel language for agents interaction and mobility, IEEE
Transactions on Software Engineering (Special Issue on Mobility and Network Aware Computing)24 (1998), pp. 315–
330.

[14] De Nicola, R., J.-P. Katoen, D. Latella and M. Massink,Towards a logic for performance and mobility, in: Proceedings
of the 3rd Workshop on Quantitative Aspects of Programming Languages, QAPL05, ENTCS153, 2005, pp. 161–175.

[15] Fletcher, J. G.,A more general algorithm for computing closed semiring costs between vertices of a directed graph,
Communications of the ACM23 (1980), pp. 350–351.

[16] Gelernter, D.,Generative communication in Linda, TOPLAS7 (1985), pp. 80–112.

[17] Jacquet, J.-M., K. D. Bosschere and A. Brogi,On timed coordination languages, in: Proceedings of the 4th International
Conference on Coordination Languages and Models, LNCS1906, 2000, pp. 81–98.

[18] Meseguer, J. and C. L. Talcott,Semantic models for distributed object reflection, in: Proceedings of the 16th European
Conference on Object-Oriented Programming, LNCS2374, 2002, pp. 1–36.

[19] Ölveczky, P. C., “Real-Time Maude 2.3 Manual,” (2007).

[20] Omicini, A. and E. Denti,Formal ReSpecT, in: A. Dovier, M. C. Meo and A. Omicini, editors,Declarative
Programming – Selected Papers from AGP’00, ENTCS48, 2001 pp. 179–196.

[21] Omicini, A. and E. Denti,From tuple spaces to tuple centres, Science of Computer Programming41 (2001), pp. 277–
294.

[22] Omicini, A., A. Ricci and M. Viroli,Formal specification and enactment of security policies through agent coordination
contexts, in: Proceedings of the 1st International Workshop on Security Issues in Coordination Models, Languages, and
Systems, ENTCS85, 2003, pp. 17–36.

[23] Papadopoulos, G. A. and F. Arbab,Coordination of systems with real-time properties in manifold, in: Proceedings of
the 20th Conference on Computer Software and Applications(1996), p. 50.

[24] Papadopoulos, G. A. and F. Arbab,Coordination models and languages, Technical report, Centrum voor Wiskunde en
Informatica, Amsterdam (1998).

[25] Picco, G., A. Murphy and G.-C. Roman,LIME: Linda meets mobility, in: Proceedings of the 21st International
Conference on Software Engineering, 1999, pp. 368–377.

[26] Ren, S., Y. Yu, N. Chen, K. Marth, P.-E. Poirot and L. Shen, Actors, roles and coordinators - a coordination model for
open distributed and embedded systems., in: Proceedings of the 8th International Conference on Coordination Models
and Languages, LNCS4038, 2006, pp. 247–265.

[27] Saraswat, V., R. Jagadeesan and V. Gupta,Foundations of timed concurrent constraint programming, in: Proceedings
of the 9th Annual IEEE Symposium on Logic in Computer Science, 1994, pp. 71–80.

[28] Talcott, C., M. Sirjani and S. Ren,Comparing three coordination models: Reo, ARC, and RRD, in: Proceedings of
the 6th International Workshop on the Foundations of Coordination Languages and Software Architectures (FOCLASA
2007), ENTCS194, 2007, pp. 39–55.

[29] Zhou, Y. and E. A. Lee,A causality interface for deadlock analysis in dataflow, in: Proceedings of the 6th ACM & IEEE
International conference on Embedded software(2006), pp. 44–52.

15

Yu, Ren, and Talcott

Appendix

A The All-Pairs Extremal Paths Algorithm on Closed Semir-
ings

Algorithm 1 ALL -PAIRS-EXTREMAL -PATHS

1: for k = 1 ton do
2: for i = 1 ton do
3: for j = 1 ton do
4: d

(k)
i,j = d

(k−1)
i,j ⊕ (d

(k−1)
i,k ⊗ d

(k−1)
k,j)

5: end for
6: end for
7: end for

B Proof of Lemma 3.2

Lemma 3.2 Given a set ofm timing constraints of the formt(ei) − t(ej) ≤ dk among

n events,At ≤ d, whereA is an m × n matrix, t =
[
t(e1) . . . t(en)

]T
, andd =

[
d1 . . . dm

]T
. We have{t |At ≤ d} =

{
t

∣∣∣Ãt ≤ d̃
}

, i.e., the set of solutions ofAt ≤

d is the same as the set of solutions ofÃt ≤ d̃ where

Ã =




1 −1

1 −1

...
. . .

1 −1

−1 1

1 −1

...
. . .

1 −1

... · · ·
...

−1 1

−1 1

. . .
...

−1 1




and d̃ =




d∗1,2

d∗1,3

...

d∗1,n

d∗2,1

d∗2,3

...

d∗2,n

...

d∗n,1

d∗n,2

...

d∗n,n−1




(B.1)

andd∗i,j , i 6= j are the shortest path weights.

Proof:
(i) {t |At ≤ d} ⊇

{
t

∣∣∣Ãt ≤ d̃
}

This directly follows from the fact thatA contains some rows of̃A and the correspond-
ing d’s in d is no less than those iñd (the shortest path weights).

(ii) {t |At ≤ d} ⊆
{
t

∣∣∣Ãt ≤ d̃
}

Assume to the contrary that there is a vectort′ =
[
t1 . . . tn

]T
s.t.t′ ∈ {t |At ≤ d}∧

16

Yu, Ren, and Talcott

t′ /∈
{
t

∣∣∣Ãt ≤ d̃
}

. This implies that the following set of linear inequalities has no solution




I

−I

Ã


 t ≤




t′

−t′

d̃


 (B.2)

Based on Farkas’ Lemma, together with the infeasibility of (B.2), we have that there exists

an (n2 + n)-vector
[
tT
1 tT

2 tT
3

]T
wheret1 andt2 are twon-vector andtT

3 is a (n2 − n)-

vector, such that (B.3), (B.4), and (B.5) hold

[
I −I ÃT

]



t1

t2

t3


 = 0 (B.3)




t1

t2

t3


 ≥ 0 (B.4)

[
t′T −t′T d̃T

]



t1

t2

t3


 < 0 (B.5)

From (B.3) we have that

t1 − t2 = −ÃTt3 (B.6)

Insert (B.6) into (B.5) we have that

−t′TÃTt3 + d̃Tt3 =
(
d̃T − t′TÃT

)
t3 < 0 (B.7)

Therefore, it must be that

∃i, j : d∗i,j < ti − tj (B.8)

since otherwisẽdT − t′TÃT ≥ 0 together with (B.4) would imply
(
d̃T − t′TÃT

)
t3 ≥ 0

which contradicts (B.7). However, (B.8) contradicts the fact thatd∗i,j is the optimal solution
to the linear program

maximize t(ei) − t(ej)

subject to At ≤ d
(B.9)

i.e.,d∗i,j is the shortest path weight. Therefore, we have{t |At ≤ d} ⊆
{
t

∣∣∣Ãt ≤ d̃
}

and

thus{t |At ≤ d} =
{
t

∣∣∣Ãt ≤ d̃
}

. 2

17

Yu, Ren, and Talcott

C Proof of Theorem 3.3

Theorem 3.3 Given two timing constraint setsAt ≤ d, andA′t ≤ d′, the convex polyhe-
dron ofAt ≤ d is included in the convex polyhedron ofA′t ≤ d′ if and only if d̃ ≤ d̃′

for Ãt ≤ d̃, andÃt ≤ d̃′, whereÃ, d̃, andd̃′ are defined as in Lemma3.2.

Proof:
Note that the convex polyhedron ofAt ≤ d is included in the convex polyhedron of

A′t ≤ d′ if and only if the convex polyhedron of
[
AT A′T

]T
t ≤

[
dT d′T

]T
is the

convex polyhedron ofAt ≤ d. Hence, we prove that̃d ≤ d̃′ if and only if
[
AT A′T

]T
t ≤

[
dT d′T

]T
is the convex polyhedron ofAt ≤ d.

(i) Necessary condition:

Suppose we havẽd ≤ d̃′, it is easy to see that
[
ÃT ÃT

]T
t ≤

[
d̃T d̃′T

]T
has the

same solution set as̃At ≤ d̃. Therefore, from Lemma3.2,
[
AT A′T

]T
t ≤

[
dT d′T

]T

has the same solution set asAt ≤ d.
(ii) Sufficient condition:

Assume
[
AT A′T

]T
t ≤

[
dT d′T

]T
has the same solution set asAt ≤ d, then from

Lemma3.2,
[
ÃT ÃT

]T
t ≤

[
d̃T d̃′T

]T
has the same solution set as̃At ≤ d̃. Assume

to the contrary that there is somed∗i,j in d̃ andd′∗i,j in d̃′ such thatd∗i,j > d′∗i,j . Sinced∗i,j is
the optimal solution to the linear program

maximize t(ei) − t(ej)

subject to Ãt ≤ d̃
(C.1)

and thus the optimal solution to the linear program (C.2)

maximize t(ei) − t(ej)

subject to


 Ã

Ã


 t <


 d̃

d̃′




(C.2)

However, the optimal solution to the linear program (C.2) can be at mostd′∗i,j when the

solution set of
[
ÃT ÃT

]T
t ≤

[
d̃T d̃′T

]T
is not empty. The contradiction implies that

{
t

∣∣∣∣
[
AT A′T

]T
t ≤

[
dT d′T

]T
}

= {t |At ≤ d} ⇒ d̃ ≤ d̃′. 2

18

	Introduction
	Related Work
	Main Contributions
	Road Map

	The Actor-Role-Coordinator Model
	The Semiring-Based Timing Constraint Models and Their Feasible Region Inclusions
	Semiring-Based Timing Constraints
	Feasible Regions of Semiring-Based Timing Constraint Sets

	Integration of the ARC and Semiring-Based Timing Constraint Models through Maude
	Actors in Maude
	Roles in Maude
	Coordinators with Semiring-Based Timing Constraints in Maude

	Conclusion
	References
	The All-Pairs Extremal Paths Algorithm on Closed Semirings
	Proof of Lemma 3.2
	Proof of Theorem 3.3

