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Abstract

For asynchronous and open distributed systems, dynamigignreess, and stringent quality of service requirements post
great challenges to model and develop such systems. The RoterCoordinator (ARC) model was previously proposed
to address these challenges. The role concept in the modabatto the dynamicity and openness issues by providing
abstractions of actor behaviors. In this paper, we focusammdinating actors and roles through message manipulations
based on synchronous event-based timing constraints. Itiaddlifferent types of timing constraints are generalirgto

a semiring-based constraint structure; and the all-patremal paths algorithm on closed semirings is applied to dehie
most stringent constraints which are logical implicationshef original set of constraints. The derived implicit coastts

are further used to test constraint inclusions and decigesections between feasible regions of timing constraist SThe
integration of the ARC model and the semiring-based timing taim models is prototyped through Maude, a rewriting
logic language. We further use the approach to solve theaResit for Dining Philosophers problem and illustrate the
expressiveness of the ARC and the semiring-based timingreimsinodels for exogenous and composable coordination of
open systems.

Keywords: Coordination model, timing constraint model, ARC, Maude

1 Introduction

The proliferation of embedded devices and significant advances degssraetwork tech-
nologies have led to new applications that involve an increasiaghg number ofdynam-
ically changingsystems of objects interactirapynchorously These objects oftentimes
must together satisfy multiple types Quality-of-Servicg QoS) requirements. As such,
the need for a new paradigm to reduce the complexity and ease the develayrtieese
applications is growing.
Viewing asynchronous and open distributed applications as compositi@mo®afina-

tion and concurrent computation decouples the two concerns and alloher hayels of
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abstraction. However, these advantages can only be fully realized ibliogving two
fundamental requirements are met. First, it is essential to have a coordinaiubel that
focuses on coordination under constraints, and is decentralizedgrexag, scalable, and
able to handle dynamic concurrent computation without itself being dynamaon8ein
order to reason about constraints, a formal model that can uniformigsenpt these differ-
ent types of constraints must be provided.

Our earlier research on coordination models has resulted in a layerediraimn
model, the Actor-Role-Coordinator (ARC) mod&f], which specifically targets for the
first need. This paper is to address the second requirement listed above

1.1 Related Work

Coordination is an important paradigm for asynchronous and open disttlipplications.
A wide spectrum of coordination strategies have been proposed to edb&ufunctional
aspects of these applications. In the landmark sur@dly Papadopoulos et al. conclude
that coordination models can be classified into two categories, data-dmarontrol-
driven. Linda [L6] and its mobile extension, Lime2f], KLAIM [ 13] and its stochastic
extension 14] represent the data-driven category; while the IWIM or Manifdtdresents
a control-driven or “exogenous” category. Tuple cengj and ReSpecT40] provide a
hybrid view.

Control-driven models isolate coordination by considering functional emtitseblack
boxes. For example, the Abstract Behavior Type (ABT) modehfd its language Re@]
extend the IWIM by treating both computation and coordination componentsnagas-
able ABTs. The emphasis in Reo is on the connectors, and the coordinatiocoa-
munication patterns which they impose on the components, but not on the centpon
which are the entities being coordinated (coordinatees). Moreoveifispgons of timing
constraints are supported in the Timed Data Stream (TDS) semantics of &tee.c8ntrol-
driven models, such as TuCSoN with ACZ2[, CoLaS [L1], and ROAD [L(], address the
scalability issues of open distributed systems through the concept ofgroup

The ARC model 26] partitions coordination into two disjoint categories, i.mgitra-
role andinter-role coordination, and uses roles and coordinators, respectively, t@ebstr
these behaviors (see Secti®n The coordinatees in the ARC model are actdjsithich
are computational entities that interact by asynchronous message g&cl@uordination
in ARC is achieved through exogenous message manipulatioggaiceand time (con-
straining message destination and dispatch time) which are transparent tmttmated
actors. Our earlier pape2§] gives detailed comparison of the ARC model with the Reo,
the Reflect Russian Dolls (RRD) 8], and other coordination models.

While spatial manipulations of messages are carried out by roles reroutisgpges
to destinations based on role polici&s], a formal model to specify and verify temporal
manipulations of messages is presented in this paper.

Incorporating the notion of time into coordination models is not new. Papadopo
los [23] combines IWIM with the work on timed concurrent constraint programmay; [
and several extensions of Linda with different notions of time are intredlirc [L7]. This
paper differs from previous work in that we provide a higher abstradfdiming require-
ment that does not depend on any specific type of timing constraints. Sesifidng been
proposed as a framework for generalizing, composing, and relatinigyqofeservice con-
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straints p,12]; and it has been shown to be applicable to component-based ma@dss [
where weights on connectors (representing QoS constraints) as wedliasompositions
are modeled by semirings. Therefore, it is quite natural to abstractetfifféypes of tim-
ing constraints through semirings. In this paper, we use constraint sesiiarmgeneralize
timing constraints; and more importantly, we study the properties of the feasitilenr
allowed by a set of semiring-based timing constraints. Algorithms for solvitgeal
path problems in directed graphs based on closed semiriBbal[ow us to derive implicit
timing constraints in a general form. Such implicit constraints are crucial in adngpthe
feasible regions of semiring-based timing constraints.

1.2 Main Contributions

The main contributions of this paper are twofold. Firstly, coordination caimg are
mapped into semiring-based timing constraints and their effects on actor caimpsitre
studied. Linear programming duality of the shortest path problem allows ugamgces-
sary and sufficient conditions for the inclusion relation between feasliems of timing
constraint sets in the real-time case. Formal proofs of the main properéesi{h3.2 and
Theorem3.3) are given in the appendices. The result is further generalized to sgmirin
based timing constraints based on morphisms between semirings. SecondiRGhe
model and the semiring-based timing constraints are integrated through tlle [@pspec-
ification language for exogenous and composable coordination of ggtanss. We use a
canonical open distributed system example, the Restaurant for Dinings@&lilers §], to
illustrate such integration.

1.3 Road Map

The rest of this paper is organized as follows: for self-containmentidde gives a brief
description of the ARC model. A detailed description of the ARC model can bedo

in [26,28]. Section3 discusses semiring-based timing constraints and their properties. Sec-
tion 4 presents a specification of the ARC model and semiring-based timing cotstrain
Maude and gives an example to show how such a formal specification fesilisasoning
about coordination properties. Finally, we conclude in Sediion

2 TheActor-Role-Coordinator M odel

The Actor-Role-Coordinator (ARC) mode26,29] is a role-based coordination model in
which a role is a static abstraction for a set of behaviors that the undedgtiogs share.
The actor model]] is used to model the distributed system’s underlying computation. The
functionality of the role is to coordinate its members. This type of coordinatioalisct
intra-role coordination. The intra-role coordination is achieved througjeypbased mes-
sage rerouting and reordering among actors within the same role. Cd@diaanong
different roles, i.e., inter-role coordination, on the other hand, is dgrebrdinators. Co-
ordinators constrain roles’ coordination behaviors which eventualgctffmessage dis-
patch time and destination. However, actors and coordinators are transfmeeach other.
Hence, the dynamicity inherent in an actor system are hidden from thdicators. Fur-
thermore, as individual actors are grouped by roles based on theivibedy coordination
becomes much more scalable in systems of large scale. Figlepicts the ARC model.
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Fig. 1. The Actor-Role-Coordinator Model

From a coordinatee’s perspective, coordination is exogenous aistributed among
roles and coordinators. In the same way as actors react to messdgegnw coordina-
tors react to events. Both computation entities (actors) and coordination®(riities and
coordinators) emit events when their public states change. Based awatbsgents and
the coordination invariants it is to maintain, a role not only makes decisionsatng
its membership, but also makes decisions on message delivery time and lociliion w
the member set. The coordination is a composition of intra-role policies andraier-
constraints. The inter-role constraints are stored in distributed coordinaifoa role is
constrained by multiple coordinators, the conjunction of the constraintsdiffenent co-
ordinators must be satisfied. A similar situation exists for roles if an actor gelkonmul-
tiple roles. Partitioning the set of actors and minimizing the overlap of consttahisen
coordinators can reduce the complexity of an ARC system.

In the ARC model, the representation of constraints is built upon events whbrch-
spond to message dispatches. As an illustrative example, consider asgtem consist-
ing of three sensors and a decision unit that aggregates data sessetidrthree sensors
(e.g., by certain voting mechanisms). Clearly, the event that the decisioaggrigates
the data must happeafter the events that raw data from the three sensors are provided.
Moreover, if we have consistency requirements on the data providecelifrie sensors,
we may constrain thdifferencesetween the occurrence times of the events that sensors
provide their data (see Exam®@el for detail). More specifically, we can treat precedence
constraints and real-time constraints as coordination policies that enferéaltdwing:

Precedence Constraints. Consider a distributed system with a set of observable events
E. Precedence constraints of the foem< e; (e;, e; € E) restrict the occurrence ef to
precede the occurrence of.

Real-Time Constraints: Consider a real-time system with a set of observable events
E. Timing constraints of the form(e;) — t(e;) < d(e;,e; € Eandd € Rt U {+o0})
restrict event; to occur no later that time units after event; occurs.

Although temporal constraints and constraint satisfaction are studiedseigrin the
real-time community, such studies are from resource (such as pragessbedulability
perspectives and have focused on specific types of constraintst thém from program-
ming language and constraint model perspectives.

Furthermore, as coordination constraints in the ARC model are distributedgacoe
ordinators and roles and these constraints are conjunctively appliectans &eing con-
strained, it is essential that we have a uniform way to compose diffegenbEconstraints
and later be able to formally reason about the compositions and satisfiability.
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3 TheSemiring-Based Timing Constraint Modelsand Their Fea-
sible Region Inclusions

As discussed in previous sections, coordination constraints can bewistrilbut need to
be conjunctively applied to the actors being constrained; thus for a peweots, there can
be multiple types of constraints imposed on them. For overlapping constraens afien

exists an implicit constraint derivable from the given constraint set thattighter con-

straint on the event pair than any of the explicitly specified ones. Howtheexistence
of different constraint types complicates the derivation of implicit condsaim this sec-

tion, we unify precedence and real-time constraints in a semiring-based tiomsgy&int

model, utilize the all-pairs extremal paths algorithm on closed semirings to deoge

stringent implicit constraints, and develop theories (inclusions and intemskregarding

the feasible regions of semiring-based timing constraints.

3.1 Semiring-Based Timing Constraints

Constraint semirings have been proposed as a framewaork for unifyogcQnstraintsd].

A constraint semiringS is a tuple((A, ®,®,0,1),<g) where A is the carrier set and
0,1 € A; @ is commutative, associative, idempotent, and ®as its unit;® is commu-
tative, associative, distributes ower and hasl as its unit element andl as its absorbing
element; aniKg is a partial order induced by the idempotence of ¢heperation, i.e.,
Ya,b e A:a <g biff a®b=">.0isthe minimum element of g and1 is the maximum
element oi<g. The application of the framework in constraining transitions between states
of a system or connectors between components can be foudpland [29], respectively.

The following is an example of applying constraint semirings in coordinatitmys.c

Example 3.1 In the sensor system mentioned in Secpwe assume that the correspond-
ing events of the three sensor actors sending their datey aee, andes, respectively. To
guarantee the consistency of the votes, we constrain the differerteesslpehe occurrence
times of the three eventse, ), t(e2), andt(es) to be within certain ranges using real-time
constraints as discussed above. The constraint set and its comlZgpoanstraint matrix
are givenin {)

tle1) —t(e2) < 6, t(e2) —t(e1) <6, 067

{t(el)—t(eg) <7, t(es) — t(e1) < 3, }; DO = [6 0 9] 1)

t(ez) —t(e3) <9, t(e3) —t(ez) < 14 3140
where D©) s the constraint matrix indexed by the subscripts of events. For instance,
because of the constrait(ie;) — t(e2) < 6, we havedg?% = 6in D), The construction

of DO is given in Q). The constraint set can also be represented as a weighted directed
constraint graph as shown in F&(a), from which implicit constraints can be derived by the
Floyd-Warshall all-pairs shortest paths algorithm. Intuitively, in the go@mstraint set, the
constraintg(es) — t(e1) < 3 andt(ey) — t(ez) < 6 imply the constraint(es) — t(es) <

3+ 6 = 9. Furthermore, this implied constraint is applied on the same pair of events
as the constraint(es) — t(e2) < 14, hence we have(es) — t(e2) < min(14,9) = 9.
Real-time constraints in this example can be naturally mapped into a constrainingemir
((R* U {+00}, min, +, +00,0), >), whereRR* U {400} is the set of constraint values,
min is used for parallel composition of two constraints in which both constraivedte
coincide; and+ is used for sequential composition of two constraints where there is a
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Fig. 2. Timing and precedence constraint graphs.

common event in both constraints differing in their signs. e represents thdk;, e;)

is not constrained, while 0 represents the most stringent constraint. The ordering relation
> on %" U {+oo} indicates the stringency of constraintsp € Rt U {+o0} : a >

b < a <g b, i.e., the smaller the constraint value, the more stringent the constraint. In
other words, we say the constraiiie;) — t(e2) < bis more stringent than the constraint
t(e1) —t(es) <aifa>0b(ora <gb). 0

Similarly, the constraint semiring{true, false},V, A, false,true) ,<g), in which
false <g true, can represent precedence constraints. Kig).and2(d) are examples of
two different sets of precedence constraints, where the correisygogntry in the constraint
matrix istrue if and only ife; < e; (represented ag — e; in the figures) o6 = j.

Given a set of initial constraints coming from different coordinators, itnigortant to
know the implications of constraint compositions, i.e., implicit constraints derivable
from the given constraint sets. There are two scenarios that a new ingolicitraint may
arise, i.e., two given constraints are on the same pair of events (parajks edthe con-
straint graph), or there is a common event in both constraints with diffeigms (connected
edges in the constraint graph). These two scenarios corresponaisstoaint parallel and
sequential composition, respectively. Theand® operations of a semiring4, @, ®, 0, 1)
are used for these operations accordingly. Under this model, the extpathalalgorithm
on closed semirings [15] can be directly applied to derive implicit constraints between
all pairs of constrained events (Appendy, where the initial matrixD(®) on the set of

external observables,i = 1,...,nis given as
0 the maximum elementof s ifi=j
dg j) = < the constraint value dfe;, e;) if i # j and(e;, e;) is constrained 2)

the minimum element ok g  if ¢ # j and(e;, ;) is not constrained

dz(g.) is the transitive closure of path lengthbetween event; ande; in the corresponding
constraint graph and hence is the most stringent constraint (with tespeg on the spe-
cific semiring) between events ande; derivable from the original set of constraints. We
denote the all-pairs extremal paths matrixIDy.

For instance, in Exampl8.1, the Floyd-Warshall algorithm for deriving implicit real-
time constraint is a special case of AlgoritHnf{AppendixA) with & and® replaced by
min and+, respectively; and i = 1,...,n, are set td), the unit of+, and all the

1,0 7

3 Constraints have directions. Therefore, the fact feate;) is not constrained does not imply th@t;, e;) is not con-
strained.

4 A closed semiring requires that and® are closed overl. As a counterexampléR U {+oo}, min, +, +oc0, 0) is not
closed since the summation of an infinite number of negative elesmesults in-oco which is not an element 8 U {+o0}.

(R U {+o0, —ooF(, min, +, +00, 0) is also problematic as the unit elementofn, i.e., +o0 , is no longer the absorbing
element of+, violating the definition of a semiring. In these cases, Aiton 1 will not work.

5 Without loss of generality, we assume that there is at most onstiint over each pair of events. If there are multiple
constraints on an event péie;, e;), one can choose the most stringent constraint usingtheoperation and drop the
others.
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other unconstrained entries are set+oo, the unit ofmin. Therefore, the most stringent
constraints between all-pairs of events are given below:

t(er) —t(e2) <6, t(e2) —t(e1) <6, 067
ter) — t(es) < 7, tles) ~t(e1) <3, p; D* =D = | 6009 ®3)
t(EQ) — t(63) <9, t(63) — t(ez) <9 390

3.2 Feasible Regions of Semiring-Based Timing Constraint Sets

Coordination constraints eliminate otherwise possible computations of a systeen G
two different sets of constrainés andC’. By showing that the computations allowed®y
include those allowed bg’, we avoid repeatedly checking computations against different
coordination constraint sets. For instance, consider the two sets @dereme constraints
as shown in Fig2(c) and2(d), wheree; — ¢; indicates that; < e;. Fig. 2(c) allows a
trace sefl,. = {61636264, €1€3€4€9, €3€1€2€4, €3€1€4€2, 63646162} 6 X and F|g2(d) allows

a trace sefl; = {ejeseqeq, esejeseqs}. Clearly,T; C T.. Therefore, if constraints in
Fig. 2(c) result in message delivery orders that guarantee safety requirerf@nt2(d)

will also guarantee the same properties.

Similarly, the timed trace of a real-time computation can be representetihasddata
strean’ [5]. The set of all timed data streams satisfying a given set of real-time constra
is a convex set and we call the set fieasible region(of the set of real-time constraints)
throughout the paper. For example, the feasible region of the setldimeaconstraints
given in (1) is illustrated in Fig.3(a), with its boundaries marked as bold lines.

#e)-1(e))<6 #e,)—t(g)<6

1(e)-1(e,) <6 1(e;)-1(¢)<6

»
fe,)~1(e)<9
ol e

j H(e,)—t(e;) <15
e
B o 1(e))—1(e) <3
t(e))—1(e) <2
L l(e,)*/(sg)j
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(a) The feasible region of constraint s&}. ( (b) Inclusion of two feasible regions.

Fig. 3. Feasible region and feasible region inclusion. Astmaseen from Fig3(a) each plane representing a constraint is
parallel to the vector. = (—1)x1 + gfl)xz + (—1)x3, where vectorxy , x2, andxs indicate time axes of events, es,
andes, respectively. Therefore, to facilitate the discussiofeakible region inclusion, we view the space in the directib

z in Fig. 3(b). We can see that the feasible region of constraintiy€g¢ay bold lines) includes that of) (black light lines).

Now, consider another set of real-time constraints gived)n (

t(el) — t(eg) <5, t(ez) — t(el) < 3, 0 0 5 5
t(er) — tez) <5, tlez) —t(e1) <2, p: DY =135 0 15 4)
t(e2) —t(e3) <15 2 400 0

6 Due to the synchronous event-based control mechanism of R odel mentioned in Sectidhand detailed in Sec-
tion 4, event orders will indicate the corresponding messageetgliorders. Also note that although we constrain only a
predefined finite set of events, the complete trace with alitsvean be formed by permutating unconstrained events and the
Inclusion relation still holds. Moreover, given that theswm is stabilized, such finite set of constrained eventitaiable.

7 Atimed data stream over an event &is a pair(a, o) wherea is a sequence with elements frdfhanda is a monoton-
ically increasing sequence with elements friyfi U {+co}.
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The feasible region of the constraint séj tan be shown to be included within that of
(1) as illustrated in Fig3(b). Lemma3.2, together with Theorer.3, shows that all-pairs
shortest paths matrices of real-time constraint sets can be used forosuphréson.

Lemma 3.2 The feasible region of a set of real-time constraints does not change whe
constraints between all event pairs are replaced by implicit constrainigetefrom Algo-
rithm 1 (AppendixA).

Proof: The formal proof is given in Appendik. O

For instance, the feasible region df) (does not change when the constraifi;) —
t(eg) < 14is changed ta(es) — t(e2) < 9.

Theorem 3.3 Given two sets of real-time constrair@sandC’ on the same set of everits
Let their corresponding most stringent implicit constraint matrices (i kpairs shortest
paths matrices) b®* andD’", respectively. The feasible region®f is included within
that of C if and only if D* > D"*(Vi,j : di; > d;j‘j) where> is the ordering relation
defined on the semiring®™ U {+o00}, min, +, +00, 0), >).

Proof: The formal proof is given in Appendik. O

This result can be easily extended to precedence constraints due tddhénipinjec-
tion
f(true)=0
f(false)=+o0
—

(({true, false},V, A, false,true),<g) (5)

(Rt U {400}, min, +, +-00, 0), >)

For example, the transitive closure matrices of the two sets of precedenstaints in
Fig. 2(c)and2(d) are

true true false false true true false true

lse true false false 1% false true false true
D* = |/° andD™* = 6
false true true true false true true true ( )

false false false true false false false true

respectively, wherel; ; or d’*, is false if and only if i # j ande; does not precede

e;. Based on the orderlng relatlon O true, false},V, A, false, true) ,<g), we have

D* <g D’* and thus the inclusion relation observed at the beginning of this section fol-
lows. For general semiring-based timing constraints, inclusion relationsectested by

(i) applying Algorithm1 with specific constraint semirings to get all-pairs extremal paths
matrices of constraint sets; and

(i) using the ordering relatiorts on the constraint semiring to determine the dominant
relationship between the all-pairs extremal paths matrices.

From LemmaB.2, similar results can be given fortersectiondetween feasible regions
of timing constraint sets. An intersection of two constraint sets (not nadlysen the same
set of events) can be used for deriving a constraint set that salistiesets of constraints.
Such intersections are derived by forming the union of the constraintagetapplying
Algorithm 1 with the corresponding constraint semirings. As the intersection of convex
sets is still convex, similar proofs can be developed.

8 Note that the event sets of the two constraint sets need ribiebgame in order for the two trace sets to be comparable.
One can always extend both event sets to the same one by addiogstrained events.
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4 Integration of the ARC and Semiring-Based Timing Constraint
Modelsthrough Maude

In this section, we use a canonical open system exart@diestaurant for Dining Philoso-
phers[8], to illustrate the expressiveness of the ARC model and the integration ARRe
and the semiring-based timing constraint models.

Example 4.1 The Restaurant for Dining Philosophers. A restaurant has one table with
n forks andn seats. Customers in the restaurantrarén > n) philosophers who can be
seated if there are free seats, and can stand up freeing the seatiataifythey have no
fork. When seated, a philosopher eats if (s)he can grab two forkexvaie (s)he think$.

It is worth pointing out that the problem differs from the classical dininggslopher
problem in that philosophers can freely join or leave the table at any time emzehn-
troducing dynamicity and openness into the system. In addition, multiple constna@ty
co-exist. For example, constraints that avoid deadlock and constrainggub@references
to particular seats so that philosophers being seated there will alwafiseat

The problem can be naturally expressed using the ARC model. More spégijfunder
the ARC model, philosophers and forks are actors. Two types of rolesséat roles and
fork roles, are introduced to shield dynamicity from coordinatarseat roles and fork
roles are circularly arranged as in the original problem of dining philbscp Philosopher
and fork actors can join and leave corresponding roles at any time. \dovay role can
only hold at most one actor at any instance of time. To simplify the presentatida w
still maintaining consistency of the model, we assume that fork actors are statieach
fork role holds a fork actor and the membership does not change. Orhbeland, the
seat role’s membership is dynamic in that its member philosopher changasritisg" .
Multiple coordinators are introduced to impose coordination constraints ooléseso that
properties such as deadlock free and preferences can be ehforce

In the remainder of this section, we detail the solution of the Restaurantifomd>
Philosophers problem using the ARC model integrated with the semiring-tiased con-
straints. We use Maud#8]} a tool that is well suited for specifying and verifying distributed
systems, to write the specification and validate deadlock-free and preégpeoperties.

4.1 Actorsin Maude

In Maude, distributed system states are modeled as multisets (configurafiac$)rs and
messages9]. Configurations are formed by multiset union starting from singleton objects

(actors) and messages. This is formalized by the following Maude declathtio

sort Configuration .

subsorts bject Msg < Configuration .

op none : -> Configuration .

op __ : Configuration Configuration -> Configuration [ctor assoc commid: none] .

9 The requirement thak, > n is from the original problem ing]. However, as will be seen, it is not to say that the table
should be full before philosophers are allowed to eat, dineg@recedence constraints that avoid deadlock can in édcily
distributed to each philosopher. However, inter-phildsronstraints, such as the preference constraints veglirde, may
prevent certain philosophers in low priority seats fronireif the table is not full. But this does not cause livelogchuse
philosophers are always free to move to the seat with higherifies.

10 Although each role has at most one member at any given time inxhaisge, oftentimes, a role may have multiple actors.

1In Maude,sort s are used to declare types, thebsor t relation on sorts parallels the subset relation on the dets o
elements in the intended model of these sorts, an operatoclardd with the keywor@p, andassoc, comm andi d can

be declared to specify equational axioms to denote assdtiatommutativity, and identity, respectively. Also noteat

bj ect is used to represent actors throughout this paper.
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A typical actor system configuration has the form
[actor_1] ... [actor_nm] msg_1 ... msg_n
Each actor has and, a set ofatt ri but es, andi n andout queues for buffering
incoming and outgoing messages. In other words, an actor object hasrne f
[id: cid | attributes | in: inQ out: outQ]

In actor systems, the message order is not specified and a messagedetindoedat
any timeas long as its target matches a receiving actor as shown in the followingerewr
rule (r 1 ) for message delivery

i :
' [:3] cid | attributes | in: inQ out: outQ] nsg(id, id, cv) =>
[id: cid | attributes | in: (inQ nmsg(id, id, cv)), out: outQ] .
Similarly, the following rewriting rule states that a message is sent when it is héetue
of an actor’s output queue.
rl [out] :
id: cid] attributes | in: inQ out: (msg(id, id, cv), outQ ] =>
[id: cid | attributes | in: inQ out: outQ] msg(id, id, cv) .
Without coordination constraints, the initial configuration of the restauardining
philosophers system in Maude is the following

[o("p-i"): Phil | status: 1, R (o("f-i"), 0), L:(o("f-j"), 0) | in: nil, out: nil]
[o("f-i"): Fork | acquired?: false | in: nil, out: nil]
wherei = 1,...,n,andj = i+ 1if i # nandlif i = n. A philosopher’'sst at us

indicates if (s)he is waiting to be seatdl (seated and thinkindlL{, waiting for both forks
(2), or eating 8); and attributes ifR/L indicate the philosopher’s right/left fork actor'sl
and current status of the forR for “no request sent”] for “request message seng for
“fork acquired”, and3 for “release message sent”), respectively.

Itis clear that in the above specification, the openness and dynamicitgtesepported
as philosopher actors need to explicitly know the names of their left andfddhactors.
Therefore, if philosophers are allowed to leave, join, or move, they wiknow the correct
fork actors to send the request or release messages. Moreoverlladkeconfiguration
such as the following (whem = n = 3)

[o("pl"): Phil | status: 2, R (o("f1"), 2), L:(o("f2"), 1) | in: nil, out: nil]
[o("p2"): Phil | status: 2, R (o("f2"), 2), L:(o("f3"), 1) | in: nil, out: nil]
[o("p3"): Phil | status: 2, R (o("f3"), 2), L:(o("f1"), 1) | in: nil, out: nil]

[o("f1"): Fork | acquired?: true | in: (msg(o("f1"),o("p2"),"request")), out: nil]
[o("f2"): Fork | acquired?: true | in: (msg(o("f2"),0("p3"),"request")), out: nil]
[o("f3"): Fork | acquired?: true | in: (nmsg(o("f3"),o("pl"),"request")), out: nil]

can be reached whegel holdsf 1 requesting forf 2, p2 holdsf 2 requesting forf 3,
andp3 holdsf 3 requesting foff 1. In Maude, deadlock configurations can be found by
thesear ch command. Hence, a level of abstraction is needed to allow dynamicity and
coordination constraints are necessary in order to avoid deadlock.

4.2 Rolesin Maude

Roles are modeled in Maude as a special case of the Reflective RussidRIRID) [18]
model in which distributed states are nested and can be seen as a distriuded soups
instead of a flat soup of actors and messages. The two level nesteglucandin, in the
ARC case, consists of roles (meta-level objects) and role messagesiénattamessages)
with roles’ configurations consisting of coordinated actors (base-tyelcts) and actor
messages (base-level messages). A role has the form

[ rid: cid | attributes, {configuration} | in: inQ out: outQ]

whereconf i gur ati on is a flat soup of actors and messages. There are three primitives
defined in a role, i.epenber shi p- change, up, anddown; and their corresponding
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conditional rewrite rulesqr | ) are presented informally as following

e crl [ menber shi p- change] guarantees that each actor may play one and only one
role at any time. In order for an actor to change its role membershipates a roleR
(causing changes in the statel®f, becones an actor with another behavior (causing
changes in the state of itself), apndi ns another role?’(causing changes in the state
of R'). Thel eave, becone, andj oi n operations must be done atomically to avoid
dangling actors.

/ /
Rattsl Aattsg Rattsg B R(Ltt34 Aattsg Rutt55
lleave join T
’ become /
Ratts4 Aatts;; Rattsg — Ratt34 Aattsg Ratt52

e crl [ up] addresses thepennessssue: it extracts a message from the configuration in
arole to the role’s output queue. Since actors are sometimes anonymoah tutheer in
open systems, a role is responsible for rerouting a message sent dpanrater it to a
proper destination role.

e crl [ down] addresses thmtra-role coordinationissue: it dequeues a message from
a role’s input queue and puts it into the role’s configuration. Since aotwer a role
share common behaviors and also have diversities, a role is respomsibleobsing a
proper actor or proper actors for processing the message sent to it.

The specific policies for rerouting messages used in[ up] andcr | [ down] should
be defined in the specific role instances. When roles are added, cattrdiis based on

roles rather than based on specific actors.

In the Restaurant for Dining Philosophers problem, roles can be usedi#l f'seats of
philosophers” to address openness and dynamicity since “seats” lle daw, the initial
configuration for the system becomes

[o("default"): DefaultRole | {
[o("p-k"): Phil | status: 0, R (o("n/a"), 0), L:(o("n/a"), 0) | ...]
I ]

[0("-SI—i.“): Seat Rol e | occupied: false, R o("F-i"), L o("F-j"), { none } | ...]
[o("F-i"): ForkRole | { [o("f-i"): Fork | acquired?: false | ...] } | ...]

wherei = 1,...,n,j =i+ 1ifi #nandlifi = n,kx = 1,...,m and every oc-
currence of fn:  nil, out: nil”is replaced with ¥ ..” for simplicity. The
Def aul t Rol e contains actors waiting to be seatad &t us: 0). Theatomicrole mem-
bership change ruler | [ menber shi p- change] as wellasbecone ofaPhi | ,j oi n

of aSeat Rol e, andl eave of aDef aul t Rol e ensure that when a philosopher changes
its st at us to 1 (thinking), it can be seated in sonBeat Rol e as long as the role’s
occupi ed attribute isf al se (which changes tbr ue atomically); and the mechanism
for a philosopher to leave a seat is similar. Also note that a philosopheroesvtbt need to
know its left and right forksSeat Rol e will reroute a message to the corréar kRol e
based onitRandL attributes. For examplesg(o("n/a"), o("pl"), "request")

in the actor level soup will be rerouted asg( o("F1"), o("S1"), "request") in

the role level soup. Th&eat Rol e records the necessary information to handle the re-
ply messages. As can be seen, the openness and dynamicity issudsexteising roles
without any changes of the original actors defined.

11
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4.3 Coordinators with Semiring-Based Timing Constraints in Maude

In the Restaurant for Dining Philosophers problem, we also need cimstthat avoid
deadlock and achieve preference requirements. A classic solutionviids aleadlock
is to break the symmetry by having each philosopher first grab a fork withotker
number. This can be done by restrictimgg( o(" S1"), o("F1"), "avai | abl e")
(o("F1")’s reply tomsg(o("F1"), o("S1"), "request") if o("F1") has not
been acquired) to be delivered befomeg( o( " F2"), o("S1"), "request").
Furthermore, a preference constraint that favors the philosophegsittio( " S1")
can be enforced by restrictiigavai | abl e" messages to(" S1") delivered before
"request" messages from all the othBeat Rol es. In the following, we discuss how
constraints are enforced through exogenous event-based messtigésdy coordinators.

4.3.1 Semiring-Based Timing Constraints in Maude
In Maude, the concept of semiring is defined as a functional théjrgrjd Algorithm1
(AppendixA) can be defined as a parameterized functional module over a germramahge
wheref nod MATRI Ximplements Algorithml (op APXP).
frmod MATRIX{X :: SEMRING is
pr (ARRAY * (sort Entry{X Y} to Entry{Y}, sort Array{X Y} to Matrix{VY}))
{I' ndexPair, .

op APXP(_,_) : Matrix{X} Nat -> Matrix{X} .
...... **xomtted due to page limt

The partial order constraint model can thus be defined awitleav from a general
semiring (A, @, ®,0,1) to Boolean algebra{ false, true} ,V, A, false, true) by map-
ping A, @, ®, 0, andl to { false, true}, V, A, false, andtrue, respectively.

view BOOL- SEM RING from SEMRING to BOOL is

sort EIt to Bool .

op 1ltotermtrue .

op O to termfalse .

op X Elt Y:Elt to term X Bool and Y:Bool .

*
op XXEIt + Y:EIt to term X: Bool or Y:Bool
endv

and the corresponding constraint matrices can be defined by miakingy MATRI X take
the parameter of the specific semiriBGOL- SEM RI NG
f mod BOOL- SEM RI NG MATRI X i s
protecting MATRI X{ BOOL- SEM RI NG} *
(sort Entry{BOOL-SEM RING to Bool MatrixEntry,
sort Matrix{BOO.-SEM RING to Bool Matri x,
op enpty to zeroMatrix) .
endfm

Real-time constraints ovéiR™ U {+oco} , min, +, +00, 0) can be defined similarly.

4.3.2 Coordinators in Maude

Without coordination, actors/roles follow the communication mechanisihjs n] and
ri[out] asin Sectiomd.L However, with exogenous coordination, the corresponding
eventin(id, id, cv) orout(id, id , cv) of a messagesg(id, id,

cv) must be synchronously tested against the (presumably unique) cdordoveconsis-
tency before it can be delivered to the target actor. For instancey tfiegiming constraint
model, undepartial order constraints, a coordinator is a quadrup®PXP(M | eset

| emap | n], whereMis the initial constraint matrix indexed Hy throughn, eset

is the set of indices of events of interest that have occurred (andysdiestonstraints in

M, ermap is the mapping from the set of events of interest to the set of indicesn and
the number of events of interest (also the dimensiolof herefore, messages cannot be
delivered freely as im| [ i n] when a coordinator is present; instead, in order for a mes-

12



Yu, REN, AND TALCOTT

sage to be delivered to its target actor, we first need to check if thespamding event of
message delivery is constrained and deliver the message if it is not.
crl[in-uncoord] :

[td : cid | atts | in: inQ out: out@ nmsg(id, id, cv) [M]| eset | emap | n]

=>

id: id tt in: i ), id, id, , t: t M t

i empt ki 8 Tl B f 12 g g ¢+ o)) out owt@ (M1 eset | eme |
When the event is constrained, we must check if the event satisfies sttaiois inM
crl[in-coord] :

[td: cid]| atts | in: inQ out: out@ nmsg(id, id, cv) [M]| eset | emap | n]

=>

[id: cid]| atts | in: (inQ nsg(id, id, cv)), out: outQ
[M] insert(emap[in(id, id, cv)], eset) | emap | n]
if (tell([M| eset | emap | n], in(id, id, cv))) .

whereop tell ([M| eset | emap | n], e) decides if all the predecessors of
emap[ e] have already occurred (@set ) 2. The coordination mechanism fout is
defined symmetrically aisn.

In the Restaurant for Dining Philosophers problem, to avoid deadloclgniyeneed

to put the following coordinator in the soup of roles defined above. Thislt®in the
following initial configuration (whenn = 4 andn = 3)
[ APXP([1,2] |-> true ; [3,4] |-> true ; [5,6] |-> true, 6) | enpty

| (in(o("S1"), o("F1"), "available")|-> 1, out(o("F2"), o("S1"), "request")|-> 2,
in(o("S2"), o("F2"), "available")|-> 3, out(o("F3"), o("S2"), "request")|-> 4,
|-> 6

in(o("S3"), o("F1"), "available")|-> 5, out(o("F3"), o("S3"), "request") )
| 6]
[o("default"): DefaultRole | {
[o("p1l"): Phil | status: 0, R (o("n/a"), 0), L:(o("n/a"), 0) | ]
[o("p2"): Phil | status: 0, R (o("n/a"), 0), L:(o("n/a"), 0) | ...]
[o("p3"): Phil | status: 0, R (o("n/a"), 0), L:(o("n/a"), 0) | ...]
[o("p4"): Phil | status: 0, R (o("n/a"), 0), L:(o("n/a"), 0) | ...]
oo

[o("S1"): SeatRole | occupied: false, R o("F1"), L: o("F2"), { |
[o("S2"): SeatRole | occupied: false, R o("F2"), L: o("F3"), { |
[o("S3"): SeatRole | occupied: false, R o("F3"), L: o("F1"), { none } | ..
[o("F1"): ForkRole | { [o("f1"): Fork | acquired?: false | ...]1 } | ...]
| | acquired?: false | ...] o]
I | ] ]

acquired?: false | ...

[o("F2"): ForkRol e { [o("f2"): Fork
[o("F3"): ForkRole { [o("f3"): Fork

and thesear ch for deadlock configurations in Maude finds no solution, indicating that the
constraints have avoided the deadlock. Moreover, preferencéraions can be enforced
through the following coordinator
[ APXP([1,2] |-> true ; [3,4] |->true , 4) | enpty

| (in(o("S1"), o("F1"), "available")|-> 1, out(o("F1"), o("S3"), "request")|-> 2,

in(o("S1"), o("F2"), "available")|-> 3, out(o("F2"), o("S2"), "request")|-> 4)

| 4]
and thesear ch for configurations where philosophers in s&2t or S3 eat before the
philosopher in seafl finds no solution. Moreover, this coordinator can be combined
with the deadlock-avoidance coordinator by intersecting their constrasndsseussed in
Section3. More specifically, the following coordinator

[ APXP([1,2] |-> true ; [3,4] |->true ; [5,6] |-> true ;
[1,9] |->true ; [7,8] |->true, 9) | enpty

| (in(o("S1"), o("F1"), "available")|-> 1, out(o("F2"), o("S1"), "request")|-> 2,
in(o("S2"), o("F2"), "available")|-> 3, out(o("F3"), o("S2"), "request")|-> 4,
in(o("S3"), o("F1"), "available")|-> 5, out(o("F3"), o("S3"), "request")|-> 6,
in(o("S1"), o("F2"), "available")|-> 7, out(o("F2"), o("S2"), "request")|-> 8,
out (o("F1"), o("S3"), "request") |[-> 9)

I 9]

120ne can easily extend coordinators to constrain recurriegts or event types, as opposed to single events, by adding
seguence numbers to events of the same type in the event histety. However, this makes theear ch space infinite
and we restrict our discussion to single events.
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is composed of the two coordinators by forming the intersection of the the tnstremnt
sets. The trace set of the intersection can be easily shown to be included tréite
sets of both constraint sets based on Thedse3n Therefore, we can guarantee that both
the deadlock-free and the preference requirements are met withanghawepeatedly
sear ch all possible configurations.

5 Conclusion

This paper presents a continuation of our previous work on the Actta-oordinator
model for asynchronous open distributed and embedded systems. ¥gefothe way that
actor or role messages are manipulated exogenously based on poecaddnreal-time
constraints imposed on their corresponding events. We discuss the inigmwaperties of
semiring-based timing constraints that generalize different timing constraies.tyMore

specifically, we apply the all-pairs extremal paths algorithm on closed sestanderive

comparable forms of timing constraint sets which allow us to decide inclusiah$irah

intersections between feasible regions of timing constraint sets. To illusteatea ex-

ogenous coordinations, i.e., behavior abstractions by roles and compuésioations by
coordinators, are imposed on actor systems, we present the ARC solutioratmnical
open system problem, the Restaurant for Dining Philosophers problensp¥dey and

integrate these coordinating entities through Maude rewriting logic langaadeare able
to show that the coordination requirements are met through Maude’s a#dfidcools and
the properties we give for semiring-based timing constraints.

Note that we have not yet applied our theories to systems with real-time datsstra
neither have we presented compositions of different types of constr@ntsfuture work
thus targets the utilization of the semiring-based timing constraint model in systiéms w
real-time constraints or different types of constraints. For example, in ¢éseaBrant for
Dining Philosophers problem, a typical real-time constraint could stipulateptiibtso-
phers release their forks befodetime units after they acquire them. However, incor-
porating real-time constraints would require us to prototype the system thridegl-
Time Maude 9. In Real-Time Maude, time is originally modeled as an ordered com-
mutative monoid(Time, +,0). The inclusion of them n operator and its unit NF in
NAT- TI ME- DOVAI N- W TH- | NF has made time a semiring, which coincides the con-
straint model we implemented in Sectidn Moreover, the inclusion and intersection of
semiring-based timing constraints discussed in Se@iprovide us a basis to studymi-
larities between timing constraints which are important in comparing imprecise systems.
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Appendix

A The All-Pairs Extremal Paths Algorithm on Closed Semir-
Ings

Algorithm 1 ALL-PAIRS-EXTREMAL -PATHS
1: for k=1ton do
2. fori=1tondo

3 for j=1ton do
k k—1 k—1 k—1
5 end for
6: end for
7: end for

B Proof of Lemma 3.2

Lemma 3.2 Given a set ofn timing constraints of the form(e;) — t(e;) < dj, among

T
n events,At < d, whereA is anm x n matrix, t = [t(el) ... tley) | »andd =

[dl dm}T. We have{t |At < d} = {t ‘f&t < (~1}, i.e., the set of solutions okt <

d is the same as the set of solutionsof < d where
— i g
1 -1 i3

1 -1 ar

-1 1 ds
1 -1 dj 4

A= : and d=| (B.1)
1 -1 ds

—n

-1 1 a;

-1 1 dy

-1 1 dr

L . L “n,n—1

andd; ;,

Proof:
() {t|At <d} D {t ‘At < d}

This directly follows from the fact thak contains some rows & and the correspond-
ing d’'s in d is no less than those it (the shortest path weights).

(i) {t|At <d} C {t‘&t < &}

i # j are the shortest path weights.

T
Assume to the contrary that there is a veator [tl tni| st.t' e {t|At <d}A
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t' ¢ {t ‘;&t <d } This implies that the following set of linear inequalities has no solution

I t/
Ilt< | —¢ (B.2)

A d

Based on Farkas’ Lemma, together with the infeasibilityg®), we have that there exists
T

an(n? + n)-vector[tlT tT tg} wheret; andt, are twon-vector andt is a (n? — n)-
vector, such thatg.3), (B.4), and B.5) hold

ty
1 1 AT||t,| =0 (B.3)
ts
ty
to| =0 (B.4)
t3
t1
¢T _¢/T g7t ty | <O (B.5)
t3
From (B.3) we have that
t —ty = —ATts (B.6)
Insert B.6) into (B.5 we have that
' TATts + d Tty = (HT — t’TKT) t3 < 0 (B.7)
Therefore, it must be that
di,j: d;j <t; —1j (B.8)

since otherwisel™ — t'TAT > 0 together with B.4) would impIy(HT - t’TKT) t3 >0
which contradictsB.7). However, B.8) contradicts the fact that? ; is the optimal solution
to the linear program

maximize t(e;) — t(e;) (B.9)
subjectto At <d |

i.e.,d;"j is the shortest path weight. Therefore, we hiweAt < d} C {t ‘At < d} and
thus{t[Atgd}:{t‘th&}. O
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C Proof of Theorem 3.3

Theorem 3.3 Given two timing constraint setAt < d, andA’t < d’, the convex polyhe-
dron of At < d is included in the convex polyhedron &f't < d’ if and only ifd < d’
for At < d, andAt < d’, whereA, d, andd’ are defined as in Lemn&a2

Proof:
Note that the convex polyhedron At < d is included in the convex polyhedron of

T T
A’t < d’ if and only if the convex polyhedron ofA T A'T} t < [dT d’T} is the
-~ o~ T
convex polyhedron akt < d. Hence, we prove that < d’ if and only if[AT A/T} t <

T
[dT d’T} is the convex polyhedron &t < d.
(i) Necessary condition:

L 4T AT
Suppose we hawt < d/, it is easy to see tha{tAT AT} t < [dT d'T} has the
~ ~ T T

same solution set a&t < d. Therefore, from Lemma.2, [AT A/T} t < [dT d/T]

has the same solution set A3 < d.
(ii) Sufficient condition:

T T
Assume{ AT A’T] t < [dT d’T] has the same solution set A3 < d, then from

-~ 17T - T ~ ~
Lemma3.2, [AT AT} t < [dT d’T} has the same solution set A+ < d. Assume

to the contrary that there is som# ; in d andd;’; in d’ such thatd; ; > di*;. Sinced; ; is
the optimal solution to the linear program

maximize t(e;) — t(e;)

~ - (C.1)
subjectto At <d
and thus the optimal solution to the linear progra@.?)
maximize t(e;) — t(e;)
A d (C.2)

A
subjectto | _ [t < | _
A d

However, the optimal solution to the linear prograf@.?) can be at most:l;:“j when the

~ ~ T ~ ~ T . . - . .
solution set of{ AT AT} t < [dT d’T} is not empty. The contradiction implies that

{¢

T T ~ ~
{ATA’T} tg[de'T} }:{t|At§d}:>d§d’. O
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