
Transforming Medical Best Practice Guidelines to
Executable and Verifiable Statechart Models

Chunhui Guo, Shangping Ren
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616, USA

Email: cguo13@hawk.iit.edu, ren@iit.edu

Yu Jiang, Po-Liang Wu, Lui Sha
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: {jy1989, wu87, lrs}@illinois.edu

Richard B. Berlin Jr.
CS Dept., UIUC and

Carle Foundation Hospital
Urbana, IL 61801, USA

Email: Richard.Berlin@carle.com

Abstract—Improving effectiveness and safety of patient care
is an ultimate objective for medical cyber-physical systems.
However, the existing medical best practice guidelines in hospital
handbooks are often lengthy and difficult for medical staff to
remember and apply clinically. Statechart is a widely used model
in designing complex systems and enables rapid prototyping and
clinical validation with medical doctors. However, clinical valida-
tion is often not adequate for guaranteeing the correctness and
safety of medical cyber-physical systems, and formal verification
is required. The paper presents an approach that transforms
medical best practice guidelines to verifiable statechart models
and supports both clinical validation in collaboration with
medical doctors and formal verification. In particular, we use
an open source statechart tool Yakindu to model best practice
guidelines and use the statechart to interact with doctors for
validating the model correctness. The statechart model is then
automatically transformed to a verifiable formal model, such as
timed automata, so that existing formal verification tool, such
as UPPAAL, can be used to verify required safety properties.
The approach also provides the ability to trace back to the
paths in the statechart model (Yakindu model) when a specific
property in its associated formal model (UPPAAL model) fails.
A cardiac arrest scenario is used as a case study to validate
the proposed approach. The tool is available on our website
www.cs.iit.edu/∼code/software/Y2U.

I. INTRODUCTION AND RELATED WORK

Medical best practice guidelines play an important role in
today’s medical care. More and more guidelines are encoded
into computer-interpretable formats, based on which, decision
supporting systems are developed to monitor actions and
provide medical staff with appropriate suggestions. However,
how to encode best practice guidelines correctly is still a
challenge in medical cyber-physical system design.

Over last decade, text-based best practice guidelines are
represented and encoded into many computer interpretable
formats, such as Arden [10], GLIF [14] , and PROforma [7].
Then, decision supporting systems such as Spock [19] are
developed to monitor actions and provide medical staff with
appropriate suggestions. Most of the encodings are similar
to the format of executable pseudo code, which is a bit low
level for medical staffs. However, many clinical problems are
complicated and those formats are not visual nor user friendly
for physicians to validate their correctness. Furthermore, it
is not easy to formally verify those formats for a rigorous

correctness requirement of life-critical medical cyber-physical
systems.

Noting that statechart is very similar to disease model and
treatment model, and is executable and can be indirectly
verified, we try to encode those guidelines to statechart.
Statechart is a widely used model in designing complex sys-
tems, such as automobile, avionics, and medical systems [9].
Yakindu statechart tool is an open-source tool kit based on
the concept of statecharts and has been applied in real-world
applications such as autonomous driving smart cars [1] and
Lego Mindstorms robot kits [3]. It has a well-designed user
interface and simulation and code generation functionality and
hence enables rapid prototyping and validation with domain
experts. With this, medical staffs will understand the design
more easily, validate the design model through user-friendly
simulation, and give more meaningful suggestions to the
model of the best practice guidelines.

However for life-critical medical cyber-physical systems,
validation by medical staff alone is not adequate for guar-
anteeing safety, and formal verification such as model check-
ing is required. Formal model based approach is appealing
because it provides a unified basis for formal analysis to
achieve the expected level of correctness and safety guaran-
tees. It has been applied in many safety-critical areas such
as automotive and aviation [11], [12]. Unfortunately, Yakindu
does not provide formal verification capability. To bridge
the gap between system modeling and formal verification,
efforts are made from research community to transform sys-
tem modeling specifications/languages, such as UML (unified
modeling language) statecharts [13], [20], hierarchical timed
automata (HTA) [5], discrete event system specification for
real-time (RT-DEVS) [8], and parallel object-oriented specifi-
cation language (POOSL) [18], to UPPAAL timed automata.
Yakindu statecharts are similar to UML statecharts, but have
major semantics differences [2]. For example, the execution
semantics of Yakindu statecharts is cycle driven, while UML
statecharts is event driven. Therefore, existing tools can not be
directly applied to transform Yakindu statecharts to UPPAAL
timed automata. Moreover, most of existing work focus on
model translation without considering how failed properties
can be traced back to the statechart model to correct design
specifications.

www.cs.iit.edu/~code/software/Y2U

The paper presents an approach that transforms medical best
practice guidelines to verifiable statechart models and supports
both clinical validation in collaboration with medical doctors
and formal verification, as shown in Fig. 1. In particular, we
use Yakindu statechart to model best practice guidelines and
use the statechart to interact with doctors for validating the
model correctness. The Yakindu statechart is then automati-
cally transformed UPPAAL timed automata by the presented
Y2U tool (www.cs.iit.edu/∼code/software/Y2U), so that the
model can be formally verified for required safety properties.
The approach also provides the ability to trace back to the
paths in the Yakindu statechart when a specific property in
its associated UPPAAL timed automata fails. The reason that
we do not encode best practice guidelines to timed automata
directly is that (1) according to discussion with physicians,
Yakindu is easier for them to understand, (2) the disadvantages
of model checking tools, such as UPPAAL [4], is that it does
not provide code generation functionality, therefore, system
designers must manually translate formal models, such as
the timed automata, into an executable model or executable
computer language source code, which is known to be error-
prone. As both the syntax and semantics of Yakindu and
UPPAAL are different, to bridge the gap between Yakindu
and UPPAAL models is a challenge. Our strategies are to build
transformation rules for each element used in the two models
and use these rules as the foundation for the transformation.

Fig. 1. Transforming Medical Best Practice Guidelines to Verifiable Statechart

The main contributions of the paper are:
• To the best of our knowledge, this is the first study

on transferring best practice guideline into statechart for
simulation and verification.

• We develop a tool to translate the Yakindu statechart to
UPPAAL timed autoamta for verification and to trace
back for model property debug.

The paper is organized as follows. Section II describes the
transformation from Yakindu statecharts to UPPAAL timed
automata. We trace failed UPPAAL properties back to Yakindu
to correct the model in Section III. A case study of a simplified
cardiac arrest treatment scenario is performed in Section IV.
We conclude in Section V.

II. TRANSFORMING YAKINDU STATECHART TO UPPAAL
TIMED AUTOMATA

To bridge the gap between Yakindu model and UPPAAL
model, we develop a tool, called Y2U, to automatically
transform Yakindu statecharts to UPPAAL timed automata. In

this section, we first highlight the major syntactic and semantic
differences between Yakindu statecharts and UPPAAL timed
automata and transformation principles. We then define the
transformation rules that meet the principles.

A. Transformation Principles

Yakindu statecharts and UPPAAL timed automata have
three key differences: (1) syntactic difference: they have differ-
ent syntactic element sets, for instance, event, entry/exit trigger
are elements in Yakindu statecharts and they do not have
counter parts in UPPAAL automata (2) structural difference:
Yakindu supports hierarchical structure, while UPPAAL only
supports flat structure; and (3) execution semantics difference:
Yakindu model is deterministic and has synchronous execution
semantics while the execution of UPPAAL model is non-
deterministic and asynchronous. In addition, Yakindu supports
simultaneous events while UPPAAL model does not. There
may be many equivalent transformations for a given Yakindu
model. As the purpose of the Y2U tool is not only to provide
a formal verification means for a statechart model, more
importantly it is for building executable statecharts for medical
best practice guidelines that are provably correct. Hence, being
able to track back to which states or transitions that cause a
desired property failed in the UPPAAL model is critical. We
therefore set the following three transformation principles:

• Principle I: transformed UPPAAL model has equivalent
execution semantics as the statechart model;

• Principle II: transformed UPPAAL model maintains
Yakindu syntactic elements when possible;

• Principle III: transformed UPPAAL model has minimal
additional elements from the Yakindu model.

Principle I ensures that verification results from UPPAAL
hold in the Yakindu model. Principle II and Principle III
ensure that an execution path in UPPAAL model can be traced
back to the Yakindu model with reduced complexity.

Based on the transformation principles, we define a set
of transformation rules. We currently focus on the basic
elements supported by Yakindu statecharts. The transformation
of syntactic sugar in the Yakindu model, such as choice,
junction, and history that are for modeling conveniences and
can be implemented by other basic elements, is not considered
in this paper.

B. Transformation Rules

With respect to UPPAAL, the Yakindu syntactic elements
can be categorized into three groups: (1) semantically equiva-
lent elements, such as states and transitions; (2) semantically
overlapping elements, for instance, both Yakindu and UP-
PAAL support data types, however UPPAAL does not support
real numbers and strings, but Yakindu does; and (3) Yakindu
specific elements, such as events, timing triggers, state actions,
and composite states. The following subsections give the
transformation rules for each category which are not sup-
ported by UPPAAL. For semantically equivalent elements, the
transformation is simple and can be implemented by one-to-
one syntax mapping. For semantically overlapping elements,

www.cs.iit.edu/~code/software/Y2U

our focus is on the domains differences. The transformations
of Yakindu specific elements need additional process. The
different execution semantics in Yakindu such as determinism,
synchrony, and simultaneous events, needs to be implemented
by UPPAAL semantics.

1) Basic Elements:
Rule 1: State

Both Yakindu and UPPAAL have state elements, each state
in Yakindu model is transformed to a unique state in UPPAAL
model. The entry state in Yakindu model is marked as initial
state in UPPAAL model.
Rule 2: Transition

Both Yakindu and UPPAAL have transition elements, each
transition in Yakindu model is transformed to a unique transi-
tion in UPPAAL model. If the transition guard contains event,
we use the UPPAAL function isEventValid(int event)
defined in Section II-B4 to check if the event guard is
satisfied. If the transition’s actions raise event, the function
push(int event) is called to simulate the event raise.
Rule 3: Data Type

Both Yakindu and UPPAAL support boolean value and
integers, but UPPAAL does not support real number and string.
To represent a real number in UPPAAL we use two integers
to store its integer part and fraction part, respectively. We also
provide real number’s comparisons (such as >, ≤, etc.) and
operations (such as +, −, etc.). For a string, we represent it
by an integer variable with a dictionary which maps integer
values to string values.
Rule 4: Event

Yakindu statechart has three types of events: in event,
out event, and internal event. Both in event (such as push
a button) and out event are interfaces with human beings,
while internal event is for the communication among automata
in the statechart model. We use the event stack described
in Section II-B4 to implement the event raise and event
acceptance. For the in/out event, we simulate its occurrence
(human action) by an auxiliary event automaton defined as
follows. The event automaton only contains one state and has
a self-loop to push the event into the event stack. Fig. 2 depicts
an example screen shot of the in event transformation.

Fig. 2. Event Transformation

Rule 5: Timing Trigger
Yakindu has two types of timers: every and after. The

transformation rules for both types of the timers are similar.
We use the every 5s example shown in Fig. 3 to illustrate the

transformation process of every timer. We declare a channel
(chan every5s) and a clock (clock t) for the timer. The
timer is represented by an input synchronization of the channel
(every5s?). We use an auxiliary automaton to simulate the
timer. The timer automaton only contains one state with
invariant (t <= 5) to guarantee that the timer automaton is
not allowed to stay in the state for more than 5 time units.
The timer automaton also has a self-loop guarded by t == 5,
which resets the clock (t := 0) and synchronizes on the
channel every5s! with the main automaton.

The transformation of after timer is the same with the every
timer except that the auxiliary timer automaton is different.
Instead of a self-loop transition, the after timer automaton
transits to another state with the same transition settings
(guard, synchronization, and update), as shown in Fig. 4.

Fig. 3. Every Timer Transformation

Fig. 4. After Timer Automaton

Yakindu supports different time units, such as second,
millisecond, microsecond, and nanosecond. To simplify the
time values in UPPAAL the Y2U tool supports time unit
adaption, rather than always uses nanosecond as the time unit.
For example, if the Yakindu model only uses second, then
the time unit of UPPAAL model is also second; while if the
Yakindu model uses both second and millisecond, then the
UPPAAL model uses millisecond as its time unit.
Rule 6: State Action

Yakindu has two types of state actions: entry/exit actions and
timer actions, and Yakindu state actions also have guard. We
transform state actions into update of corresponding transitions
and represent the update by UPPAAL functions to avoid the
interference of state action guards and the transition guards.
The function push(int event) defined in Section II-B4 is
called to simulate the event raise in state actions. Fig. 5 shows
the screen shot of a state action transformation example.
Rule 6.1: Entry/Exit Action

The entry/exit actions are carried out on entering or exiting
a state. They are transformed into update on all incom-
ing/outgoing transitions of the state. For the state S2 in Fig. 5,
its entry action entry[x > 0]/x = 0;raise EB means that
when entering S2, if x is larger than 0 then x is assigned
to 0 and the event EB is raised. We transform the entry

action to the update of transition S1 → S2, and use function
updateInS2(int &x) to assign x value and call push(2)
to push event EB onto the event stack. The exit action is
transformed similarly.
Rule 6.2: Timer Action

For each timer action of a state, we add a self-loop transition
for state. The self-loop transition is guarded by the negations
of guards on all existing outgoing transitions, synchronized
with the timer automaton (Rule 5), and updated with the timer
action. For example, the state S2 in Fig. 5 has a timer action
every 1s[x >= 0]/x = x+ 1 which means if S2 is active and
x ≥ 0, x will be increased by 1 for every second. To transform
the timer action, we add a self-loop transition for S2. Because
the timer action is taken only if S2 is active, hence we set the
guard of the added transition as !(x > 5) which is the negation
of S2’s outgoing transition guard. The added transition is
also synchronized with an auxiliary timer automaton defined
by Rule 5 through channel every 1s. In the mean time,
the update function updateEvery1sS2(int &x) is called to
increase x.

Fig. 5. State Action Transformation

2) Flatten Hierarchical Structure:
Yakindu allows composite states, while UPPAAL only sup-

port flat structure. Such disparity requires the Y2U tool to flat
the hierarchical structure in Yakindu model, i.e., separate the
sub-automata contained in the composited state from the main
automaton containing the composite state, and implement the
interactions between a sub-automaton and the main automa-
ton through synchronizations between them. If a composite
state contains multiple sub-automata, we transform each sub-
automaton using Rule 7 below. If a statechart model contains
nested composite states, we flat it recursively starting from the
out most composite state.
Rule 7: Composite State

First, a composite state is represented by a simple state in
UPPAAL model. The actions in a composite state are also
transformed by Rule 6. To maintain the interaction between
the main automaton and sub-automata in a composite state,
we declare two channels: active for activating/entering the
composite state and deactive for deactivating/exiting sub-
automata in the composite state. In the main automaton, we

add two output synchronizations on active and deactive

channels for incoming and outgoing transitions of the com-
posite state, respectively. The sub-automata in a composite
state are hence separated from the main automaton. For each
sub-automaton, as all its transitions have lower priorities than
each outgoing transition of the composite state, we adjust the
transition guards according to the transition priority rule, i.e.,
Rule 8 below. In addition, we add an input synchronization on
the active channel for the initial state’s outgoing transition,
and add a transition, which outgoes to the initial state and syn-
chronizes on the input deactive channel, for each state except
the initial one. We set the execution priorities (Rule 9) of sub-
automata to be only lower than the main automaton. In addi-
tion, such sub-automata priorities setting schema also prevents
the main automaton to accept events raised by sub-automata,
which is not allowed in Yakindu execution semantics. Fig. 6
shows an example of composite state transformation. In Fig. 6,
the sub-automaton is activated/deactivated when the main
automaton enters/exists state S2. The activation/deactivation
of the sub-automaton is implemented by synchronization with
the main automaton through channel active/deactive. As
the sub-autamaton transition SS1 → SS2 has lower priority
than the main automaton transition S2→ S3, based on Rule 8,
the guard of SS1→ SS2 is changed to y == 0&&!(x == 0).

Fig. 6. Composite State Transformation

3) Modeling Determinism and Synchrony with UPPAAL:
The Yakindu statecharts have deterministic and synchronous

execution semantics [2], while UPPAAL timed automata’s ex-
ecution semantics is non-deterministic and asynchronous [4].
To maintain the semantics equivalence between the Yakindu
statechart and the transformed UPPAAL timed automata, we
need to model determinism and synchrony in UPPAAL.

To implement the determinism within an automaton, the
Yakindu statecharts assign a priority to each transition and
select the transition with the highest priority from all enabled
outgoing transitions of the same state to perform. The default
priority is set as the order transitions are added when the model
is built. We implement the transition priorities in UPPAAL by
Rule 8 given below.
Rule 8: Transition Priority

Assume a state has n outgoing transitions {T1, T2, . . . , Tn}
sorted in non-increasing priority order, and the guard of
transition Ti is denoted as Gi, to consider transition pri-
orities, we change the transition guard for Ti to be
Gi && !G1 && !G2 && . . . && !Gi−1 to enforce that higher
priority transitions take place before lower priority transitions.

The Yakindu statecharts implement the determinism among
different automata by automaton priority and synchronous ex-
ecution. According to the decreasing automation priority, each
automaton executes one step in one time cycle if the transition
is enabled, otherwise the automaton stays in current state. In
UPPAAL timed automata, we use the lockstep method [16],
shown in Rule 9, to force synchronous execution based on au-
tomaton priorities. We ignore the added event automata (Rule
2) and timer automata (Rule 3) when modeling synchrony in
UPPAAL as the added automata does not affect the model’s
execution behavior.
Rule 9: Automaton Priority and Synchrony

Suppose a model contains n automata {A1, A2, . . . , An}
that are sorted by its execution priority in decreasing order.
The lockstep method to model synchrony is as follows. Each
automaton Aj is associated with an integer Ij to indicate how
many steps Aj has executed. If none of outgoing transitions
is enabled, the automaton stays in current state, which is
equivalent to that the automaton executes a self loop step in
current state. To ensure all automata execute the same number
of steps, for each state in Aj , we add a self-loop transition
which is guarded by the negation of all existing outgoing
transition guards of the state. If a state does not have outgoing
transitions, then the added self-loop transition is guarded
by true. For each transition in Aj , we add an additional
guard on execution step indicator Ij , which is conjuncted
with the existing guard to force synchronous execution. Ij is
increased by 1 when Aj executes one step. More specifically,
as A1 has the highest priority, to ensure A1 gets executed
first, we add an additional guard I1 == I2 && I2 ==
I3 && . . . && In−1 == In on its each transition. For other
automata Aj (j > 1), to ensure its execution order, we add
Ij < Ij−1 as a transition guard for Aj . To solve possible out-
of-range problem of step indicators Ij , Ij is reset to 0 when it
reaches its maximal value (215−1). As Yakindu does not store
events, hence when the automaton with the lowest priority
executes a transition, it calls empty() defined in Section II-B4
to clear all events for current time cycle. We use an example
to explain the transformation rule.

Assume we have three automata T1, T2, and T3 as shown
in Fig. 7, where the execution priority is T1 > T2 > T3.
We define the step indicators for T1, T2, and T3 as synT1,
synT2, and synT3, respectively. For each state in the three
automata, we add a self-loop transition that disables original
outgoing transitions of the state. For instance, the guard of
added self-loop transition for state A1 is !(x > 0). For
each transition, additional guards are added to force lockstep
execution, such as guard function checkHighest() for T1

and checkLower() for T2 and T3. Each transition also calls
function update() to increase step indicator by 1 and reset

the indicator of higher priority automaton to 0 if its maximal
value is reached. However, the step indicator reset of the
lowest priority automaton T3 is not performed. To solve the
problem, for each state in the highest priority automaton T1,
we add another self-loop transition which checks if synT3

reaches maximal value by function checkLowestMAX() and
reset synT3 by function updateLowestMAX().

Note that in addition to maintaining the execution semantics
equivalence, restricting UPPAAL model to have deterministic
and synchronous execution semantics will simplify the process
of tracing back to the Yakindu model when UPPAAL finds an
unsatisfied property.

4) Support Simultaneous Events in UPPAAL:
We use synchronizations provided in UPPAAL to simulate

the events in Yakindu. The challenge is that Yakindu supports
simultaneous events, while UPPAAL does not. A simple
solution to simulate simultaneous events in UPPAAL seems
to be adding series committed states and represent an event
by a synchronization on a transition between two committed
states. However, such solution can not be directly applied.
First, we have to ensure the simultaneous events maintain a
consistent order, or can lead to a deadlock. Second, the added
synchronizations may interfere with other transformation rules
that involve synchronizations (such as Rule 5, Rule 6.2, and
Rule 7).

To solve the problem, we design an event stack to store
all raised/valid events during one execution time cycle. The
event stack includes the current valid event number and
all valid events each of which is represented by a unique
integer. The constant integer TotalEventNumber is adjusted
based on the model. A dictionary that maps each event
name to its corresponding integer is provided. The event
stack provides three functions: (1) empty() empties the event
stack at the end of an execution time cycle and is called
by the automaton with lowest execution priority (Rule 9);
(2) isEventValid(int event) checks if the input event is
valid and is called when a transition guard contains event; (3)
push(int event) pushes an input event onto the stack and
is called when an event is raised. The implementation of the
event stack is given in Fig. 8.

With the support of event stack, we obtain the following
properties: (1) an automaton can raise and accept multiple
events at the same time; (2) multiple automata can accept the
same event concurrently; (3) an event can only be accepted
by automata with lower priorities than the automaton which
raise the event; and (4) an event can only be accepted in the
same execution time cycle in which it is raised.

C. Correctness of the Transformation

As Yakindu statecharts lack formal semantics, it is difficult
to prove the equivalence between a Yakindu model and its
associated transformed UPPAAL model unless a concrete
equivalence criteria is given. In this paper, we define two mod-
els are equivalent if their observable executions are equivalent,
i.e., (1) the two models have the same execution path if the
input settings are the same, and (2) all variable values at each

Fig. 7. Synchrony Modeling in UPPAAL

Fig. 8. Event Stack

execution step of the two models are equal. The following
theorem proves that the transformation is correct.

Theorem 1. The UPPAAL model transformed from a given
Yakindu model by applying Rule 1 to Rule 9 maintains the
Yakindu model’s execution behaviors. �

Proof. We prove it by induction on the number N of iteration
the rule is applied.
Base Case: When N = 1, the transformation maintains the
execution equivalence. To prove the base case, we need to
prove each rule maintains the execution equivalence. We take
Rule 6 as an example and simulate the models in Fig. 5
using both Yakindu and UPPAAL. For both the Yakindu model
and the transformed UPPAAL model, the execution paths are
S1→ S2→ S3 and the value change traces of variable x are
0 → 1 → 2 → 3 → 4 → 5 → 6 → 10. The tracing results

show that the two models have the same execution behaviors.
Other transformation rules can be proven similarly.
Induction Step: Assume the statement is true when N = k
and prove it also holds when N = k + 1. According to
the transformation rules, each rule does not interfere the
execution behaviors of other rules. The base case has proven
each transformation rule maintains the execution equivalence.
Hence, if the statement holds when N = k, then it is also true
when N = k + 1. �

D. Transformation Procedure

The transformation procedure of the Y2U tool is shown
in Algorithm 1. First, we define a data structure M to
represent automata structure (Line 1). The data structure M
contains variable declarations, automata information, states
information, transitions information, etc. Then the Y2U tool
parses the input Yakindu statechart Y according to Yakindu
statecharts’ XML format and stores all information in M
(Line 2). For each automaton A stored in M , the Y2U tool
transforms each element in A based on Rule 1 to Rule 9
defined in Section II-B and updates corresponding information
in M (Line 3-5). Lastly, the Y2U tool creates the transformed
UPPAAL timed automata U , which is corresponding to the
input Y , from the updated M according to UPPAAL XML
format (Line 6).

III. TRACE FAILED UPPAAL PROPERTIES BACK TO
YAKINDU STATECHARTS

In the process of proving a desired property on an executable
medical best practice guideline, UPPAAL may find a counter
example, i.e., an execution path that fails the desired property.
In this case, we need to trace the failed UPPAAL property
back to the Yakindu model. However, as the transformation
from Yakindu model to UPPAAL model may add new states
and transitions in the UPPAAL model. The trace back of a
failed execution path from UPPAAL model to Yakindu model

Algorithm 1 TRANSFORM(Y)
Input: A Yakindu statechart Y .
Output: The transformed UPPAAL timed automata U corre-

sponding to the input Y .
1: Define a data structure M to represent automata
2: Parse Y to M
3: for each automaton A in M do
4: Transform each element in automaton A based on Rule

1 to Rule 9 and update M
5: end for
6: Create U from M
7: return U

becomes a challenge task. In this section, we first identify state
and transition relationships between Yakindu and transformed
UPPAAL models firstly, and then analyze the execution paths
in UPPAAL and present the trace back procedure.

A. State and Transition Relationships between Yakindu and
Transformed UPPAAL Models

For the nine transformation rules given in Section II-B,
Rule 4 and Rule 5 add auxiliary event automata and timer
automata to the UPPAAL model to simulate the event raise
and timing trigger, respectively. As proven by Theorem 1,
the added automata does not affect the model’s execution
behaviors. Hence, we ignore these added events and timer
automata when tracing back execution path from UPPAAL
to Yakindu.

For a given Yakindu model Y , let SY and TY denote the
state set and transition set in Y , respectively. Let SU and
TU denote the state and transition sets transformed from the
Yakindu model Y using transformation rules (Rule 1 to Rule
9) with auxiliary event and timer automata being removed. We
have the following theorems.

Theorem 2. Given a Yakindu model Y and its transformed
UPPAAL model U , the mapping from UPPAAL state set SU
to Yakindu state set SY is bijective. �

Proof. According to Rule 1, each state in Yakindu model
is transformed to a unique state in UPPAAL model, hence
the mapping from SU to SY is surjective. Based on all
transformation rules (Rule 1 to Rule 9) without considering
auxiliary event and timer automata, no additional states are
added into SU , so the mapping from SU to SY is also injective.
Therefore, the mapping from SU to SY is bijective. �

Theorem 3. Given a Yakindu model Y and its transformed
UPPAAL model U , the mapping from UPPAAL transition set
TU to Yakindu transition set TY is surjective, but not injective.
�

Proof. According to Rule 2, each transition in Yakindu model
is transformed to a unique transition in UPPAAL model, hence
the mapping from TU to TY is surjective. However, Rule 6,
Rule 7, and Rule 9 add additional transitions into TU , so the
mapping from TU to TY is not injective. �

B. Execution Paths in UPPAAL
If a desired property is not satisfied, UPPAAL often gives

a counter example. Depending on different verification strate-
gies (such as searching orders) that a user chooses. counter
examples may be different. However, UPPAAL may not be
able to provide all possible counter examples through limited
number of verifications, because the verification stops once a
counter example is detected.

Example 1. Given a model containing three automata
T1, T2, and T3, as shown in Fig. 9, the property we
want to verify is that x is always larger than 0 when
T2 reaches state D2, i.e., A[] T2.D2 imply x > 0.
For the given model, the property does not hold, and
UPPAAL gives following counter execution paths: (1)
Path1 : (A1, A2, A3) → (A1, B2, A3)

true−−−→ (A1, C2, A3) →
(A1, D2, A3), (2) Path2 : (A1, A2, A3) → (A1, A2, B3) →
(B1, A2, B3) → (B1, B2, B3)

syn−−→ (C1, C2, B3) → (C1, D2, B3).
For each path, if there are multiple transitions between two
states, we put the transition information (such as guards,
synchronizations, updates) over the arrow to uniquely identify
the transition. For instance, there are two transitions between
state B2 and C2, we use syn on the path to identify the
transition with the synchronization between B2 and C2. �

Fig. 9. Trace Back Example
In a UPPAAL execution path, each state is the combination

of the active states of all automata. Each step in a path only
takes one transition in an automaton, except the step that
synchronizes two automata, in which case both synchronized
automata takes one transition.

Note that we prefer breadth first search to depth first search
when finding a counter example by UPPAAL. There are two
reasons for the select preference: (1) the breadth first search
can find more potential individual paths for different automata;
and (2) the breadth first search can avoid individual paths of
automata that do not interfere with the desired property, such
as the path of automaton T3 in Example 1.

C. Trace Back Procedure
Based on the analysis given in Section III-A, the auxiliary

event automata added by Rule 4 and timer automata added
by Rule 5 can be ignored from back tracing perspective. For
the other automata, we need to trace states and transitions in
the execution path from UPPAAL back to Yakindu. Based
on Theorem 2, the state mapping from Yakindu model to
UPPAAL model is bijective. The trace back of states is simple
and we only need to find the corresponding states. According
to Theorem 3, the transition mapping from UPPAAL model

to Yakindu model is surjective but not injective. Hence, for
the transitions in UPPAAL model which have corresponding
transitions in Yakindu model, the trace back is also simple.
However, additional analysis is needed for tracing back the
added transitions in UPPAAL model.

Based on the proof of Theorem 3, the added transitions can
be divided into three cases as follows.
Case 1: transitions added by Rule 6.
If a state contains timer actions, then self-loop transitions
are added to the state. If the added transitions fail a desired
property, it should be traced back to the corresponding timer
actions in the state. However, the state is already contained in
the path to be traced back, otherwise the added transitions can
not be in the trace back path. Hence, the added transitions can
be ignored in this case.
Case 2: transitions added by Rule 7.
For a composite state, transitions are added into sub-automata
to simulate the exit execution of the sub-automata. Based on
Theorem 1, these additional transitions does not change the
model’s execution behaviors. Hence, the added transitions can
be ignored in this case as well.
Case 3: transitions added by Rule 9.
To model synchrony in UPPAAL, self-loop transitions are
added to each state to simulate that the automaton stays in
current state. Based on Theorem 1, these added transitions
does not change the model’s execution behaviors. Hence, the
added transitions can also be ignored.
According to the above analysis, we can ignore the back trace
of transitions added into UPPAAL model by Rule 6, Rule 7,
and Rule 9.

Based on above analysis, the trace back procedure is as
follows: (1) delete the additional event automata added by
Rule 4 and timer automata added by Rule 5 in the given
UPPAAL execution path; (2) for each state in the path, find its
corresponding state in Yakindu model; (3) for each transition
in the path, find its corresponding transition in Yakindu model;
if the corresponding transition is not found in the Yakindu
model, ignore the transition.

There may be multiple execution paths that cause a property
to fail, but UPPAAL can only provide one counter example at a
time. We take iterative approach to fix one counter example at
a time, re-transform the modified Yakindu model for further
verification with UPPAAL. We use Example 2 to show the
iterative process.

Example 2. Given a Yakindu model whose transformed UP-
PAAL model is the same as the one given in Example 1 (shown
in Fig. 9), verify the property A[] T2.D2 imply x > 0.

We transform the Yakindu model using the Y2U tool and
verify the property. The property is not satisfied, and a
counter example given by UPPAAL is Path1 : (A1, A2, A3)→
(A1, B2, A3)

true−−−→ (A1, C2, A3) → (A1, D2, A3). The Path1 is
traced back to the Yakindu model, and the corresponding path
in Yakindu is the same with Path1. We analyze the path in
Yakindu model and fix the action of transition A2 → B2 to
y := 7, x := y − 6 in Yakindu model.

We re-transform the modified Yakindu model and verify
the property again. The property still does not hold, and a
counter example given by UPPAAL is Path2 : (A1, A2, A3)→
(A1, A2, B3)→ (B1, A2, B3)→ (B1, B2, B3)

syn−−→ (C1, C2, B3)
→ (C1, D2, B3). Using back trace process, we fix the action of
transition B1→ C1 to z := 6, x := z − 5 in Yakindu model.

We re-transform the modified Yakindu model and verify the
property again. The property now is satisfied. In this example,
two iterations are taken to fix the errors in the model. �

IV. CARDIAC ARREST CASE STUDY

In this section, we perform a case study on a simplified
medical scenario. The models and detailed information of the
cardiac arrest case study are available on our website www.
cs.iit.edu/∼code/software/Y2U/case-study/cardiac-arrest.html.

A. Cardiac Arrest Scenario

Cardiac arrest is the abrupt loss of heart function and can
lead to death within minutes. American Heart Association
(AHA) provided resuscitation guidelines for the urgent treat-
ment of cardiac arrest [6].

In a cardiac arrest scenario, medical staff intend to activate
a defibrillator to deliver a therapeutic level of electrical shock
that can correct certain types of deadly irregular heart-beats
such as ventricular fibrillation. The medical staff need to check
two preconditions: (1) patient’s airway and breathing are under
control and (2) the EKG (electrocardiogram) monitor shows
a shockable rhythm1. Suppose the patient’s airway is open
and breathing is under control. However, the EKG monitor
shows a non-shockable rhythm2. In order to induce a shockable
rhythm, a drug, called epinephrine (EPI), is commonly given to
increase cardiac output. Giving epinephrine, nevertheless, also
has two preconditions: (1) patient’s blood pH value should be
larger than 7.43, and (2) urine flow rate should be greater than
12 mL/s4. In order to correct these two preconditions, sodium
bicarbonate should be given to raise blood pH value, and
intravenous (IV) fluid should be increased to improve urine
flow rate.

In medical treatment procedure, the side effects of a treat-
ment may invalidate the previously satisfied preconditions. For
example, one potential side effect of sodium bicarbonate is
suppressed respiratory drive5, which adversely affect patient
breathing that is one precondition of activating a defibrillator.
In this case, the preconditions of activating a defibrillator need
to be re-checked. If the breathing precondition is invalidated,
assisted ventilation should be provided In addition, a treatment
may not be effective and additional treatments should be
provided. For example, increasing IV fluid volume may not

1The shockable rhythms are ventricular fibrillation and ventricular tachy-
cardia [6].

2Non-shockable rhythms are asystole and pulseless electrical activity [6].
3Severe acidosis, which is an increased acidity in the blood and other body

tissue, will significantly reduce the effectiveness of epinephrine [6].
4If a patient suffers from kidney insufficiency, giving epinephrine may

worsen the kidney function and cause acute renal failure [6].
5Respiratory drive is the control of respiration, which involves the exchange

of oxygen and carbon dioxide [6].

www.cs.iit.edu/~code/software/Y2U/case-study/cardiac-arrest.html
www.cs.iit.edu/~code/software/Y2U/case-study/cardiac-arrest.html

successfully improve patient’s urine flow rate. In this case,
diuretics, such as Lasix, should be given. Fig. 10 shows a
simplified cardiac arrest treatment procedure.

Fig. 10. Cardiac Arrest Treatment Procudure

There are two medical properties needed to be verified in the
cardiac arrest treatment validation procedure: P1: Defibrillator
is activated only if the EKG rhythm is shockable and airway
and breathing is normal; and P2: Epinephrine is injected only
if the blood pH value is larger than 7.4 and urine flow rate is
higher than 12 mL/s.

B. Executable and Verifiable Model Design
In our previous work, we developed a validation protocol

to enforce the correct execution sequence of performing treat-
ment, regarding preconditions validation, side effects monitor-
ing, and expected responses checking based on the pathophys-
iological models [17], [15]. In this paper, we use Yakindu to
model the simplified cardiac arrest treatment procedure with
the validation protocol. The model consists of the following
automata: Treatment, Ventilator, EPIpump, SodiumBicarbon-
atePump, IVpump, and LasixPump. The automata communi-
cate using Yakindu events and shared variables. The Treatment
automaton implements preconditions validation, side effects
monitoring, and expected responses checking specified in
Fig. 10. The other automata implement treatment actions (such
as medicine injection) and communicate with the Treatment
automaton. Due to the space limit, we focus on the Treatment
automaton. The Treatment automaton is built with Yakindu
statechart tool, as shown in Fig. 11.

We transform the model built with Yakindu to UPPAAL
model with the Y2U tool. The transformed Treatment automa-
ton in UPPAAL is given in Fig. 12. For the transformed model,
we need to verify the medical properties P1 and P2 given by
the medical staff always hold. In addition, we need to verify
the UPPAAL model is deadlock free.

The property P1 can be checked by two formulas:
(1) E <> Treatment.ActivateDefibrillaotr and (2)
A[] Treatment.ActivateDefibrillaotr imply Breath ==
0 && Rhythm == 0. The first formula verifies that if
the ActivateDefibrillaotr state is eventually reached, and
the second one verifies that if the two preconditions are
always satisfied when the defibrillaotr is activated. The prop-
erty P2 is represented as E <> Treatment.InjectEPI

and A[] Treatment.InjectEPI imply BloodPH int >=
7 && BloodPH frac > 4 && UrineF low int > 12. It can
be verified similarly. formulas. The deadlock free property is
checked by the formula A[] not deadlock. In the transformed
cardiac arrest treatment UPPAAL model, all the properties,
i.e., P1, P2, and deadlock free, are satisfied.

C. Trace Back with Injected Error

To show the trace back procedure, we inject an error
into the Yakindu model as follows: change the guard from
state InjectEPIPre to state InjectEPI to BloodPH >
7.4 && UrineFlow > 9.

We transform the Yakindu model with injected error to
UPPAAL model and verify property P2. The verification
result is failure and a counter example given by UPPAAL
is CP : ActivateDefibrillaotrPre → InjectEPIPre →
InjectEPI. Then we trace CP back to the Yakindu model,
which is the same with CP. We correct the error by modifying
the guard from state InjectEPIPre to state InjectEPI to
BloodPH > 7.4 && UrineFlow > 12. The modified Yakindu
model is re-transformed, re-verified property P2, which is
satisfied.

V. CONCLUSION

The existing medical best practice guidelines in hospital
handbooks are often lengthy and difficult for medical staff to
remember and apply clinically. The paper present an approach
to transform medical best practice guidelines to executable and
verifiable statechart models. In particular, we present a tool,
called Y2U, to transform a statechart model to a verifiable
formal model, so that formal verification can be exercised.
The transformation rules are designed in such a way that not
only the transformed formal model maintains the execution
equivalence with the original statechart model, they also allow
easy trace back to the statechart model in case verification
finds a counter example. The case study of a simplified
cardiac arrest treatment scenario clearly demonstrated: (1)
statechart model provides a more efficient and accurate way to
communicate among medical experts and computer scientists;
(2) the Y2U tool accurately transform the Yakindu model
to the UPPAAL model; and (3) the back trace functionality
supported by the Y2U tool provides good feed back to medical
personals for quick identifying errors in the statechart model.

The tool is available on our website www.cs.iit.edu/∼code/
software/Y2U.

ACKNOWLEDGEMENT

We thank Mohammad Hosseini and Maryam Rahmaniheris
for their valuable suggestions to the Y2U tool. The research
is supported in part by NSF CNS 1545008 and NSF CNS
1545002.

REFERENCES

[1] Autonomous driving with the yakindu smart car. http://blog.statecharts.
org/2015/02/yakindu-smart-car.html.

[2] Yakindu statechart tools. https://www.itemis.com/en/yakindu/
statechart-tools/.

www.cs.iit.edu/~code/software/Y2U
www.cs.iit.edu/~code/software/Y2U
http://blog.statecharts.org/2015/02/yakindu-smart-car.html
http://blog.statecharts.org/2015/02/yakindu-smart-car.html
https://www.itemis.com/en/yakindu/statechart-tools/
https://www.itemis.com/en/yakindu/statechart-tools/

Fig. 11. Cardiac Arrest Treatment Yakindu Model

Fig. 12. Cardiac Arrest Treatment UPPAAL Model

[3] Yakindu statecharts enter lego mindstorms. http://blog.statecharts.org/
2014/11/yakindu-statecharts-enter-lego.html.

[4] G. Behrmann, A. David, and K. Larsen. A tutorial on uppaal. In Formal
Methods for the Design of Real-Time Systems, pages 200–236. Springer,
2004.

[5] A. David, M. Möller, and W. Yi. Formal verification of uml statecharts
with real-time extensions. In Fundamental Approaches to Software
Engineering, volume 2306 of Lecture Notes in Computer Science, pages
218–232. 2002.

[6] J. M. Field, M. F. Hazinski, M. R. Sayre, L. Chameides, S. M.
Schexnayder, R. Hemphill, R. A. Samson, J. Kattwinkel, R. A. Berg,
F. Bhanji, et al. Part 1: executive summary 2010 american heart
association guidelines for cardiopulmonary resuscitation and emergency
cardiovascular care. Circulation, 122(18 suppl 3):S640–S656, 2010.

[7] J. Fox, N. Johns, and A. Rahmanzadeh. Disseminating medical knowl-
edge: the proforma approach. Artificial Intelligence in Medicine, 14(1-
2):157 – 182, 1998.

[8] A. Furfaro and L. Nigro. A development methodology for embedded
systems based on rt-devs. Innovations in Systems and Software Engi-
neering, 5(2):117–127, 2009.

[9] D. Harel. Statecharts: A visual formalism for complex systems. Science
of computer programming, 8(3):231–274, 1987.

[10] G. Hripcsak, P. D. Clayton, T. A. Pryor, P. Haug, O. Wigertz, and
J. Van der Lei. The arden syntax for medical logic modules. In
Proceedings/the... Annual Symposium on Computer Application [sic] in
Medical Care. Symposium on Computer Applications in Medical Care,
pages 200–204. American Medical Informatics Association, 1990.

[11] M. Jersak, K. Richter, R. Ernst, et al. Formal methods for integration
of automotive software. In Design, Automation and Test in Europe
Conference and Exhibition, 2003, pages 45–50, 2003.

[12] O. Laurent. Using formal methods and testability concepts in the

avionics systems validation and verification (v&v) process. In Software
Testing, Verification and Validation (ICST), 2010 Third International
Conference on, pages 1–10, April 2010.

[13] M. Nobakht and D. Truscan. An approach for validation, verification,
and model-based testing of uml-based real-time systems. In the Eighth
International Conference on Software Engineering Advances (ICSEA
2013), pages 79–85, 2013.

[14] V. L. Patel, V. G. Allen, J. F. Arocha, and E. H. Shortliffe. Representing
clinical guidelines in glif. Journal of the American Medical Informatics
Association, 5(5):467–483, 1998.

[15] B. R. Schatz and R. B. Berlin Jr. Healthcare infrastructure: Health
systems for individuals and populations. Springer Science & Business
Media, 2011.

[16] J. Smed and H. Hakonen. Algorithms and Networking for Computer
Games. Wiley, 2006.

[17] P. Wu, D. Raguraman, L. Sha, R. Berlin, and J. Goldman. A treatment
validation protocol for cyber-physical-human medical systems. In
Software Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on, pages 183–190, Aug 2014.

[18] J. Xing, B. Theelen, R. Langerak, et al. From poosl to uppaal:
Transformation and quantitative analysis. In Application of Concurrency
to System Design (ACSD), 2010 10th International Conference on, pages
47–56, June 2010.

[19] O. Young and Y. Shahar. The spock system: developing a runtime
application engine for hybrid-asbru guidelines. In Artificial Intelligence
in Medicine, pages 166–170. Springer, 2005.

[20] D. Zorin and V. Podymov. Translation of uml statecharts to uppaal
automata for verification of real-time systems. Proceedings of the
Spring/Summer Young Researchers’ Colloquium on Software Engineer-
ing, 6, 2012.

http://blog.statecharts.org/2014/11/yakindu-statecharts-enter-lego.html
http://blog.statecharts.org/2014/11/yakindu-statecharts-enter-lego.html

	Introduction and Related Work
	Transforming Yakindu Statechart to UPPAAL Timed Automata
	Transformation Principles
	Transformation Rules
	Basic Elements
	Flatten Hierarchical Structure
	Modeling Determinism and Synchrony with UPPAAL
	Support Simultaneous Events in UPPAAL

	Correctness of the Transformation
	Transformation Procedure

	Trace Failed UPPAAL Properties back to Yakindu Statecharts
	State and Transition Relationships between Yakindu and Transformed UPPAAL Models
	Execution Paths in UPPAAL
	Trace Back Procedure

	Cardiac Arrest Case Study
	Cardiac Arrest Scenario
	Executable and Verifiable Model Design
	Trace Back with Injected Error

	Conclusion
	References

