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a b s t r a c t

TheHadoopDistributed File System (HDFS) is designed to run on commodity hardware and can be used as
a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to ac-
cess bulk data with high I/O throughput. As a result, this system is suitable for applications that have large
I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of
interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper an-
alyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents
an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes
the performance degradation problem. Experiments have shown that with the proposed architecture to-
gether with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive
files increases 300% on average with only a negligible performance decrease for large data set tasks.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Hadoop Distributed File System (HDFS) is designed as a
massive data storage framework and serves as the storage com-
ponent for the Apache Hadoop platform. This file system is based
on commodity hardware and provides highly reliable storage and
global accesswith high throughput for large data sets [15]. Because
of these advantages, the HDFS is also used as a stand-alone general
purpose distributed file system and serves for non-Hadoop appli-
cations [6].

However, the advantage of high throughput that the HDFS pro-
vides diminishes quickly when handling interaction-intensive files,
i.e., files that are of small sizes but are accessed frequently. The
reason is that before an I/O transmission starts, there are a few
necessary initialization steps which need to be completed, such as
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data location retrieving and storage space allocation. When trans-
ferring large data, this initialization overhead becomes relatively
small and can be negligible compared with the data transmission
itself. However, when transferring small size data, this overhead
becomes significant. In addition to the initialization overhead, files
with high I/O data access frequencies can also quickly overburden
the regulating component in the HDFS, i.e., the single namenode
that supervises and manages every access to datanodes [1]. If the
number of datanodes is large, the single namenode can quickly be-
come a bottleneck when the frequency of I/O requests is high.

In many systems, frequent file access is unavoidable. For ex-
ample, log file updating, which is a common procedure in many
applications.1 Since theHDFS applies the rule of‘‘Write-Once–Read-
Many’’, the updating procedure first reads these files, modifies

1 In the Hadoop framework, the computing task is allocated to the worknode
where the data is required. Hence, this task’s log file can be updated locally
and hence the overhead is negligible; however, in this paper, we treat the HDFS
as a stand-alone distributed file system without necessarily having the Hadoop
framework support.
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them and thenwrites them back. Such an updating procedure gen-
erates I/O requests with high frequency. Another example is the
synchronization procedure in a distributed system using incre-
mental message delivery via the file system. In this case, an in-
cremental message file is generated by a changed component of
a distributed system. This file is relatively small and it is read by all
participating components to synchronize the entire system. As the
HDFS allows multiple tasks reading the same file simultaneously,
it is possible that a file is read frequently within a short period of
time.

To overcome these issues for interaction-intensive tasks, efforts
are often made from three directions: (a) improving data struc-
ture or system architecture to provide faster I/Owith less overhead
[3,13], (b) extending the namenode with a hierarchical struc-
ture [12,2,5] to avoid single namenode overload, and (c) designing
a better storage allocation algorithm to improve data accessibil-
ity [7,8].

In this paper, we use the HDFS as a stand-alone file system
and present an integrated approach to addressing the HDFS perfor-
mance degradation issue for interaction-intensive tasks. In partic-
ular, we extend theHDFS architecture by adding cache support and
transforming single namenode to an extended hierarchical namen-
ode architecture. Based on the extended architecture, we develop
a Particle Swarm Optimization (PSO)-based storage allocation al-
gorithm to improve the HDFS throughput for interaction-intensive
tasks.

The rest of the paper is organized as follows. Section 2 discusses
the related work focusing on the cause of throughput degradation
when handling interaction-intensive tasks and possible solutions
developed for the problem. Section 3 presents an enhanced HDFS
namenode structure. Section 4 describes the proposed PSO-based
storage allocation algorithms to be deployed on the extended
structure. Experimental results are presented and analyzed in
Section 5. Finally, in Section 6, we conclude the paper with a
summary of our findings and point out future work.

2. Related work

As the application of the HDFS increases, the pitfalls of the
HDFS are also being discovered and studied. Among them is the
poor performance when the HDFS handles small and frequently
interacted files. As Jiang et al. [9] pointed out, the HDFS is designed
for processing big data transmission rather than transferring a
large number of small files, hence it is not suitable for interaction-
intensive tasks.

Shvachko et al. [15] notice that the HDFS sacrifices the
immediate response time of individual I/O requests to gain better
throughput of the entire system. In other words, the HDFS chooses
the strategy of enlarging the data volume of a single transmission
to decrease the time ratio of data transmission initialization
overhead in the overall operation. The transmission initialization
includes permission verification, access authentication, locating
existing file blocks for reading tasks, allocating storage space
for incoming writing tasks, and establishing or maintaining
transmission connections, etc. Another issue with the current
HDFS architecture is its single namenode structure which can
quickly become the bottleneck in the presence of interaction-
intensive tasks and hence cause other incoming I/O requests to
wait for a long period of time before being processed [1].

Efforts have been made to overcome the shortcomings of the
HDFS. For instance, Liu [13] combines several small files into a large
file and then uses an extra index to record their offsets. Hence,
the number of files is reduced and the efficiency of processing
access requests is increased. To enhance the HDFS’s ability of
handling small files, Chandrasekar et al. [3] also use a strategy that
merges small files into a larger file and records the location of file
blocks inside the client’s cache. This strategy also allows the client
application to circumvent the namenode to directly contact the
datanodes, hence alleviates the bottleneck issue on the namenode.
In addition, this strategy uses pre-fetching in its I/O process to
further increase the system throughput when dealing with small
files. The drawback of the strategy is that it requires client side code
change.

Preventing access requests from frequently interacting with
datanodes at the bottom layer of the HDFS can also significantly
improve the I/O performance for interaction-intensive tasks. As
illustrated in [9], one way to achieve this is to add caches to the
original HDFS structure. In [17], a shared cache strategy named
HDCache, which is built on the top of the HDFS, is presented to
improve the performance of small file access.

Liao et al. [12] adapt the conventional hierarchical structure for
the HDFS to increase the capability of the namenode component.
Borthakur [2] discusses in detail the architecture of the HDFS and
presents several possible ways to apply the hierarchical concept
to the HDFS. Fesehaye et al. provide a solution called EDFS [5]
which introducesmiddleware and hardware components between
the client application and the HDFS to implement a hierarchical
storage structure. This structure uses multiple layers of resource
allocators to ease the quick saturation issue of the single namenode
structure.

Designing optimized storage allocation algorithms is another
effective way to improve the throughput of the HDFS. In [7], a load
re-balancing algorithm is developed to always keep each file in an
optimal location in a dynamic HDFS environment to gain the best
throughput. An algorithm for optimizing file placement in the Data
Grid Environment (DGE) is presented in [8]. This algorithm consists
of a data placement and migration strategy to help the regulating
components (i.e. the namenode in the HDFS) in a distributed data
sharing system to place files in a large number of data servers.

As can be seen from the brief summary above, to overcome
the throughput degradation issue for interaction-intensive tasks,
most of the research in this area focuses on three mechanisms,
i.e., optimizing metadata or adding cache, using an extended
structure for the regulating component and designing new storage
allocation algorithms. However, if these mechanisms are applied
individually, the bottleneck issues are only shifted from one place
to the other, rather than be rooted out. The solution presented
in this paper intends to integrate all three approaches and solve
the performance degradation issue for interaction-intensive tasks
from the root. Our experiment results have shown successful
evidences of the proposed approach.

3. Extended namenode with cache support

In this section, an extended namenode architecture for the
HDFS with cache support is specified. The following two subsec-
tions describe the details of the structure and its functionalities.

3.1. Extended namenode structure

The original HDFS structure, which consists of a single
namenode, is redesigned with a two-layer namenode structure as
shown in Fig. 1. The first layer contains aMaster NameNode (MNN)
which is actually the namenode in the original HDFS structure. The
second layer consists of a set of Secondary Name Nodes (SNNs),
which are applied to every rack of datanodes. Reliable caches, such
as SSD, are deployed to every SNN. It is worth pointing out that the
SNN does not have to be a newmachine; it can be configured from
an existing data node machine, though in our implementation, we
use a dedicated server for each SNN. To the MNN, each SNN is its
datanode; to the datanodes, they see the SNN in its rack as their
namenode. Hence, the new structure fully preserves the original
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Fig. 1. Hierarchical namenode structure.

HDFS relations between MNN and SNN, and SNN and datanode
structures. Therefore all the original functions and mechanisms of
the HDFS are intact and the number of modifications needed for
the structural extension is minimal.

The addition of the new layer to the original HDFS structure
causes changes on both the reading and the writing procedures.
Specifically, when a reading request arrives, the MNN first
inquires the SNNs and then navigates the client application to the
destination racks (Step 1 in Fig. 1). Afterwards, the SNN in the
rack checks its mapping table and continues navigating the client
application to the datanodes that hold the file blocks (Step 2). At
the end, the client application contacts the datanodes and accesses
the file blocks (Step 3-I). If a block is cached, the SNN plays the role
of a datanode and lets the client application read the block from its
cache (Step 3-II).

Similarly, to write data into a datenote, the MNN first allocates
one or more racks for the client application to write (Step A).
Then, the SNN further allocates datanodes for the client application
(Step B). Afterwards, the client application begins to write file
blocks into these datanodes (Step C-I). If the file block is assigned
to the caches in that rack, then the SNN plays the role of a datanode
and lets the client application write the file block into its cache
(Step C-II). When the writing is done, the datanodes report their
changes to the SNN and the SNNs report their changes to the MNN
(Steps D and E), replicas for each incoming block are created in
different datanodes (Step F) and a notification is sent to the client
application.

3.2. Functionality of the SNN

As illustrated in Fig. 1, the SNN layer is deployed between the
MNN layer and the datanode layer. Each rack of datanodes has an
SNN that maintains a cache dedicated to this rack. This layer has
three functionalities.

The first functionality is to keep the monitoring and messaging
mechanisms between the original namenode and the datanode
unchanged. To maintain the original monitoring mechanism
running on the MNN, the SNN submits all the information about
its rack to the MNN after receiving the MNN’s heartbeat inquiry. In
addition, the SNN sends its own heartbeat inquiry to the datanodes
in its rack in order tomonitor their status. Furthermore, in order to
keep the HDFS’s message mechanism intact, the SNN responds to
all the messages generated by the MNN and sends its own control
messages to the datanodes in its rack.

The second functionality of the SNN is to store interaction-
intensive file blocks in its cache. Once a file is marked by the MNN
as an interaction-intensive one and assigned to a rack, instead of
relaying the writing request to the datanode layer, the SNN of
this rack intercepts the request and stores the incoming blocks
into its caches. As the I/O speed of a cache is much faster than
the speed of hard disks used in the datanode, the throughput
of interaction-intensive files is improved. Furthermore, as the
number of SNNs is much smaller than the number of datanodes,
file blocks in the cache can be locatedmuch faster and hence have a
shorter I/O response time.Moreover, since the cost of transmission
initialization on the datanode is high, the system overhead can be
further reduced by using the SNN to prevent interaction-intensive
tasks from frequently accessing the datanode. When a file is no
longer interaction-intensive, the SNN writes all of the cached file
blocks to datanodes.

The third functionality is to increase the MNN capability of
handling frequent requests. In the original structure, the single
namenode becomes the bottleneck when the datanode pool
becomes large or when the requests come too frequently. The new
layer turns the single namenode component into a hierarchical
namenode structure and thus significantly increases the capability
of the HDFS in managing a large resource pool and handling
large incoming requests. As a result of the new layer, the size of
the datanode pool managed by the MNN and individual SNN is
reduced. For the MNN, the size of its datanode pool is the number
of SNNs. For each SNN, the size of its datanode pool is the size of
the original datanode pool divided by the number of SNNs.

4. Storage allocation algorithm

As presented in Section 3, by changing the single namenode to a
hierarchical namenode structure, the HDFS’s capability of handling
frequent requests increases. In addition, caches introduced in this
structure provide the ability of faster data access with shorter re-
sponse time. Under this new structure, the throughput degradation
caused by the access to interaction-intensive files can be further
reduced by applying an optimized storage allocation strategy. The
development of this strategy is done in three steps, i.e., for a given
file, we need to determine (1) file block’s interaction-intensity
value, (2) its re-allocation triggering condition, and (3) file block
storage location based on the file’s interaction-intensity.

The notations used in the following sections are illustrated in
Table 1 (sorted by the order of appearance).

4.1. Interaction-intensity

The interaction-intensity of a file, denoted as the I value, is a
measurement of how frequent this file has been requested. The re-
quest can be either a read or a write request submitted from one
or multiple applications. All the blocks of a file share the same I
property of this file. Since the I property of a file varies from time
to time, its value is represented as a function of time.

More precisely, for an existed file, its I value at time instance t
is defined as

I(f ,Q , t) = |R| (1)

where Q is a given length of a time quantum during which the
interaction-intensive value is calculated. It is a constant. The set
R in Eq. (1) is defined as below:

R = {(fi, ti)|fi = f ∧ max(0, t − Q ) ≤ ti ≤ t} (2)
where t is the current system time and (fi, ti) denotes a file access
request with file name fi and request arriving time ti. The intuitive
meaning of I(f ,Q , t) is that for the file f at the time instant t , the
total number of requests of this file submitted to the HDFS in the
last time quantum.

4.2. Trigger condition of re-allocation

The I value of a file is dynamic; it determines the best stor-
age place of this file, so re-allocating the file every time its I value
changes can improve the throughput for the whole system. How-
ever, the re-allocation is a resource-consuming procedure; using
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Table 1
Notations in this section.

Notation Definition

I Interaction-intensity of a file
f File name
Q Time quantum
t time instance
R The access request set of a file
Iu Upper bound of I value for migration
Il Lower bound of I value for migration.
S Instant available I/O speed
Fs File size
Vi Node i.
Dm Migration time cost.
Bd Instant available network bandwidth.
Cr Improvement caused by migration.
Y Threshold of migration.
−→
VM PSO solution vector for MNN
FM ID set of incoming file blocks
FMI ID set of incoming interaction-intensive file blocks
QF Queue for incoming file blocks sorted by arriving time
Γ The ratio of a file’s I value versus the average I value
Ψ Estimated cost of placing blocks into cache
Ω Estimated cost of placing blocks into datanode
A[r] Number of blocks on rack r
R[i] Remaining cache space on rack i
Ravg/W avg Average reading/writing throughput
Ract/W act Number of active reading/writing channels
B Block size
P Penalty coefficient for using cache
Dr Number of datanode in a rack
Yi Number of blocks assigned to node i
Er/Ew Estimated reading/writing speed of a node
−→
VS PSO solution vector for SNN
V [ ] PSO velocity array
ω The inertia factor of PSO
C1/C2 The two acceleration factors of PSO

this procedure too frequently will make the performance even
worse. Hence, to set up the trigger conditions of re-allocation for
the existing interaction-intensive files is necessary.

Intuitively, there are two triggering conditions for each
interaction-intensive file:

• If a file’s I value is larger than its Iu, it indicates that the current
storage node cannot provide enough available I/O speed and
thus this file should be moved to a faster storage node.

• If a file’s I value is smaller than its Il, i.e. the lower bound of its
I value, it indicates that the available I/O speed provided by the
current storage node is higher than the requirement of this file.
In this case, this file should be moved to another storage node
with relatively lower I/O speed, or it will cause resource waste
since there may not be enough storage spaces for the files with
higher interaction-intensities.

Assume that there are n storage nodes. For each of them, the
available I/O speed is denoted as S. Although both the access
pattern and the data distribution can impact the performance of
the hard disk, for simplicity, S is assumed to be the average case.
The storage nodes are ordered by their available I/O speed, i.e.,
Si < Sj if i < j. In addition, assume that at time instance t , file f is at
storage node j and the size of f is Fs, then within the constant time
quantum of Q , the number of un-processed requests U is defined
as follows:

U(f , j,Q , t) = I(f ,Q , t) −


Q · Sj
Fs


. (3)

Suppose that the file is then re-allocated to the next storage node
Vj+1 which provides a higher available I/O speed than node Vj does.
Also, assume that the I value of this file remains unchanged in the
next time quantum, i.e., I(t + Q ) = I(t). Then, if the time cost of
datamigration (denoted asDm) of this file is counted in, the number
of expected un-processed requests U ′ for this file in the next time
quantum is as follows:

U ′(f , j + 1,Q , t + Q ) = I(t) −


(Q − Dm) · sj+1

Fs


. (4)

In Eq. (4), the value of migration time cost Dm is calculated as
follows:

Dm =
Fs

Min(Bd, Vj, Sj+1)
=

Fs
Min(Bd, Sj+1)

(5)

where Bd represents the network bandwidth between node j and
j + 1.

Hence the improvement rate (denoted as Cr ) based on the un-
processed requests between a file on node or cache j and j + 1 is
calculated as below:

Cr =
U(f , j,Q , t) − U ′(f , j + 1,Q , t + Q )

I(t)
. (6)

By comparing the Cr value with a given non-negative threshold
Y , it can be determined whether a file should be re-allocated
in the next time quantum. In other words, if a file’s current I
value is larger than its Cr value, then it should be re-allocated in
the next time quantum, otherwise it should stay on the current
node without invoking the allocation algorithm for a new storage
destination. Therefore, the first triggering condition is Cr = Y .
Threshold Y is an empirical value and is sensitive to the network
configuration. From Eqs. (4)–(6), at the time instance t , the upper
bound of a file’s I value Iu can be represented as

Iu =
⌊(Q − Dm) · Sj+1⌋ − ⌊Q · Sj⌋

Fs · Y
. (7)

Clearly if U(f , j,Q , t) < 0, the node’s or cache’s I/O capacity is
larger than the requests. Since the space of a high speed storage
node (such as the light-workload cache) is limited, hence the file
should move to a lower speed device right after the next time
quantum starts. In other words, the second triggering condition
is U = 0, Hence, the lower bound of a file’s I value, i.e. Il, can be
calculated as below:

Il = Q ·
Si
Fs

. (8)

At the end of each time quantum, a file’s I value is updated. If
the new I value is either larger than its Iu value or smaller than its
Il value, all the blocks of this file are re-assigned to the incoming
block queue and then allocated to a new storage destination by the
allocation algorithm.

4.3. Brief introduction to the Particle Swarm Optimization algorithm

By utilizing the I value, we present a Particle Swarm Optimiza-
tion (PSO)-based storage allocation algorithm to decide storage lo-
cations for incoming file blocks.

The concept of the Particle Swarm Optimization (PSO) was
first introduced in [10]. As an evolutionary algorithm, the PSO
algorithm depends on the explorations of a group of independent
agents (the particles) during their search for the optimum solution
within a given solution domain (the search space). Each particle
makes its own decision of the next movement in the search space
using both its own experience and the knowledge across thewhole
swarm. Eventually the swarm as a whole is likely to converge to an
optimum solution.

The PSO procedure starts with an initial swarm of randomly
distributed particles, each with a random starting position and
a random initial velocity. The algorithm then iteratively updates
the position of each particle over a time period to simulate the
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movement of the swarm to its searching target. The position of
each particle is updated using its velocity vector as an increment.
This velocity vector is generated from two factors [11]. The first
factor is the best position a particle has ever reached through each
iteration. The second factor is the best position the whole swarm
has ever detected. The optimization procedure is terminatedwhen
the iteration time has reached a given value or all the particles have
converged into an area within a given radius.

To apply the PSO to the storage allocation problem we need to
(1) define the particle structure and the search space; (2) define
the optimize objective functions for both MNN and SNN layers
and; (3) use the PSO approach to explore the solution domain
and eventually derive a near optimal solution vector. This solution
vector is the allocation plan thatmaximizes the overall throughput
of an incoming batch of file blocks.

On both the MNN and the SNN layers, a Particle Swarm
Optimization (PSO)-based storage allocation algorithm is applied
to search for the optimal allocation plans. The following two
subsections define the solution vector as the particle structure, the
value domain as the search space, and the I/O time cost function
as the objective function for applying the PSO in these two layers,
respectively.

4.4. Storage allocation at the MNN layer

In the MNN layer, the MNN only allocates blocks to either racks
or caches. The solution vector (

−→
VM ) at the MNN layer is used as an

allocation plan to indicate the storage place for each incoming file
block. In this section, we first define the structure of the solution
vector (

−→
VM ), and then introduce the cost function to evaluate the

quality of a given solution vector.
Within the solution vector

−→
VM , FM denotes a set of IDs of

incoming file blocks, and the queue QF contains the IDs of all the
files whose blocks are in FM . As the HDFS uses the first-come–first-
serve policy to schedule their tasks, the queue QF is hence ordered
by the block’s arrival time. The subset FMI ⊆ FM contains all the
interaction-intensive blocks in FM .

If there are n racks at the SNN layer, to the MNN, there are
2n datanodes: the first n datanodes represent the datanode pool
in each rack and the other n datanodes represent the caches in
each rack. For example, assume that the MNN decides a block be
allocated to the kth datanode, if k ≤ n, then this block is placed
into the datanode pool of rack k; otherwise, if k > n, that means
this block is actually allocated to the cache on the (k − n)th rack.

Afterwards, we define the solution vector at the MNN layer as
−→
VM . Its size is |FM |.

−→
VM [i] represents the location where block QF [i]

is allocated. The value domain of entry i in vector
−→
VM is defined as

follows:

−→
VM [i] ∈


[1, 2n], if QF [i] ∈ FMI
[1, n], if QF [i] ∈ (FM − FMI).

(9)

As given in Eq. (9), for blocks in FMI , the value domain of their
corresponding entries in

−→
VM is [1, 2n] which indicates that the

blocks in FMI may be stored in cache. For the rest of the blocks, as
their domain is in [1, n], they can only be allocated to datanodes in
a rack.

As an example, assume that there are 5 racks, i.e., n = 5, and an
incoming block QF [i] is in set FMI , then the value domain of entry
−→
VM [i] is in the range of [1, 10]. If

−→
VM [i] = 3, it indicates that the

incoming block QF [i] is allocated to rack 3; while if
−→
VM [i] = 9, the

block is allocated to the cache of rack 4.
To compare the interaction-intensity of incoming files with

those already in the cache, the indicator Γ is introduced for each
incoming file to represent the ratio of the file’s current I value
versus the average I value of all cached files. The definition of
indicator Γ for file f is given below:

Γf =
If

N
i=1

Ii

 
N

(10)

where N is the total number of file blocks cached in the SNN layer.
Given the indicator Γ , assume that the incoming files are

allocated to rack r , and there are A[r] blocks on rack r; the cost
function Cost for the solution vector

−→
VM in theMNN layer is defined

as

Cost = k1 ·

2n
r=n

Ψ (r − n) ·


−→
VM [i]=r

Γ −1
i

A[r]

+ k2 ·

n
r=1

Ω(r) ·


−→
VM [i]=r

Γi

A[r]
(11)

where the value Cost is determined by two factors: the estimated
cost of placing blocks into caches (Ψ ), and the estimated cost of
placing blocks into datanodes (Ω) and k1 and k2 are the weight
factors of these two components.

Allocating blocks with high (low) Γ value into a storage place
that has low (high) I/O workload, such as an idle cache, reduces
the Cost value; while putting blocks with low (high) Γ value to
a low (high) workload storage place increases the Cost value. As
the smaller cost of I/O tasks can bring larger throughput to the
system, Eq. (11) becomes the objective function for the PSO-based
algorithm.

In Eq. (11),Ψ (r) is defined as follows andwe leave the definition
of Ω(r) to the next subsection:

Ψ (r) = P
B∗A[r]
R[r] ·


k3 ·

W act
[r] · B · A[r]
W avg [r]

+ k4 ·
(Ract

[r] + 1) · B · A[r]
Ravg [r]


(12)

where array R records the size of the remaining cache space
available in each rack, arrays Ract (W act ) and Ravg (W avg ) record
the number of active reading (writing) channels connected to the
cache and average reading (writing) throughput of the cache in
each rack, respectively; they are obtained from theHDFS. Bdenotes
the block size defined by the system. Constants k3 and k4 are the
weight factors used to measure the ratio of reading and writing
frequencies of the corresponding task.

P is a coefficient used to introduce penalty into the cost function
for using caches. As the total space of caches is scarce compared
to the storage volume provided by datanodes, the penalty P

B∗A[r]
R[r]

increases exponentially with the ratio of required cache space
versus remaining cache space. As a result, when the cache is nearly
full, the PSO is more likely to allocate the interaction-intensive
blocks to the datanodes with lighter workload rather than to the
cache. Furthermore, if the size of blocks assigned to the cache of
rack r is larger than its available space, i.e., B ∗ A[r] > R[r], the
value of Ψ (r) will be greatly scaled up and this allocation plan is
unlikely to be chosen by the PSO.

4.5. Storage allocation at the SNN layer

For each allocation solution generated by the MNN during the
PSO searching procedure, the SNNs calculate their own feedback
factor Ω . Based on Ω , the MNN can then evaluate the quality of
this possible solution using Eq. (11). In fact, the factor Ω itself is
a quality evaluation criterion for allocation plans generated at the
SNN layer. In other words, this is the objective function for the PSO
applied in this layer.
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For the SNN in rack r , its solution vector is defined as
−→
V r
S . Use Sr

to define the set of blocks assigned from the MNN to rack r , then
the cardinality of

−→
V r
S is |Sr |. Similar to the solution vector

−→
VM of the

MNN, each entry in
−→
V r
S indicates the storage destination allocated

to each block assigned from theMNN to this rack. Use Dr to denote
the number of datanodes in rack r , the value domain for each entry
in

−→
V r
S is [1,Dr ], i.e., each block in the set Sr can be placed into any

datanode in this rack.
For the SNN in rack r , its cost function Ωr is defined as

Ω(r) =

Dr
i=1


k3 ∗

Yi

ER(i)
+ k4 ∗

Yi

EW (i)


(13)

where EW (i) and ER(i) are the predicted writing and reading speed
on node i; they are given by the auto-regressive integratedmoving
average prediction model presented in [16]. k3 and k4 are the
weight coefficients for reading and writing time costs. Yi is used
to record the number of blocks allocated to datanode i.

For the datanode i, let arrays Rw and Rr record the average
writing and reading speed respectively after each allocation.
Let arrays α and β record the CPU occupation rate and the
available network bandwidth of datanode i respectively after each
allocation. For the jth allocation of datanode i, EW (i) is calculated
as follows:

EW (i) =
β[j]

β[j − 1]
· AD[j] · Rw[j − 1]

− kev
α[j − 1]

α[j]
· (E ′

W (i) − Rw[j − 1]) (14)

where E ′

W (i) is the estimated writing speed of the (j − 1)th
allocation in datanode i. AD is the regression coefficient array that
is computed based on past occurrences:

AD[j] =

E′
W (i−1)
Rw [i−1] + AD[i − 1]

2
. (15)

In Eq. (14), the performance decrease is represented as E ′

W (i) −

RW [i− 1] and kev is the weight factor for it. RW (i) is calculated in a
similar way as Eq. (14) inwhich EW is replaced by ER, Rw is replaced
by Rr and E ′

W is replaced by E ′

R.

4.6. Apply PSO to the storage allocation problem

In the case of the storage allocation problem, a particle in the
PSO is a candidate allocation plan. The structure of particles in the
MNN and SNN layers are

−→
VM and

−→
VS , respectively.

The particle moves within the search space from one point
to another. The edge of the search space is defined by the
value domain of the solution vector. Each point in the search
space represents an allocation combination. Since the incoming
file blocks have different interaction-intensities and the storage
places in the HDFS have different I/O performances, different
combinations can provide different I/O throughput for incoming
batch files. When one combination is selected (one particle moves
to the point in the search space corresponding to this combination),
the estimated cost of this combination (the quality of the
corresponding point) can be evaluated by the object function.
In our scenario, minimum cost indicates maximum throughput.
Furthermore, the terminating condition of the PSO applied in this
scenario is reaching a given value of the iteration time.

Let array p[x] represent the coordinates of a particle’s current
location, array b[x] represent the coordinates of the best known
position within the history of this particle, and array g[x] denote
the coordinates of the best known position within the history of
the entire swarm. According to the PSO procedure, the movement
Table 2
Accelerate parameter configuration.

Phase f value C1 C2

Exploration [0.5, 0.75) 1.5 2.5
Exploitation [0.25, 0.5) 1 3
Jumping-out [0.75, 1) 2.5 1.5
Convergence [0, 0.25) 2 2

of a particle between two iterations is determined by the velocity
vector denoted by array V [x]which has the same cardinality as the
particle. In this array, V [i] represents the ith component velocity,
which is determined by

V [i] = ω · V [i] + C1 · rp · (b[i] − p[i])

+ C2 · rg ∗ (g[i] − p[i]). (16)

In Eq. (16), the coefficient ω is the inertia weight. C1 and
C2 are two acceleration parameters which control the weight of
learning from the particle’s own best position and the weight of
learning from the global best position, respectively. rp and rg are
two random numbers between zero and one.

4.7. Configure the PSO’s parameters with evolutionary state estima-
tion

Since the PSO applied to the storage allocation algorithm has
limited iteration time, the speed of particle convergence is critical
to the quality of the final solution. In addition, the local optima
phenomenon can greatly decrease the quality of the final result.
Therefore, accelerating the convergence speed and avoiding the
local optima have become the two most important and appealing
goals in the PSO. To improve the quality of the final solution, the
Evolutionary State Estimation (ESE) technique [18] is introduced
in the storage allocation algorithm.

The basic concept of the ESE is to use different parameter
configurations in four different PSO search phases: exploration,
exploitation, convergence and jumping out. Particles in different
phases should have different behaviors, which are determined by
the inertia weight ω and two acceleration coefficients C1 and C2.

To determine the search phase, an evolutionary factor f is
introduced. This factor is based on the aggregation status of the
whole swarm. Take the swarm in the MNN layer as an example.
Denote the mean distance of each particle i as di; it is defined as

di =
1

N − 1

N
j=1,j≠i

 |FM |
k=1

(pki − pkj ) (17)

where N and |FM | are the swarm size and the number of
dimensions, respectively. Denote di of the globally best particle as
dg . Compare all di’s and determine the maximum and minimum
distance dmax and dmin. Then, the evolutionary factor f is defined
by

f =
dg − dmin

dmax − dmin
. (18)

According to [14,18], the inertia weight ω can be determined
following f :

ω =
1

1 + 1.5e−2.6f
. (19)

In addition, based on the f factor, the current search phase
can be determined. Then, a proper combination of accelerate
parameters can be chosen. In this paper, the determination of
phase and the selection of accelerate parameters are defined as in
Table 2.

The PSO-based algorithmwith ESE is illustrated in Algorithm 1.
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Algorithm 1: Algorithm of PSO with ESE
1 Generate an initial population of particles within search
spaces;

2 Each particle evaluate its current location by the Optimal
Object Function;

3 while iteration time limit not met do
4 update current global best location g[x];
5 use Eq. (18) to determine the evolutionary State;
6 use Eq. (19) and Table 2 to configure ω, C1 and C2;
7 for each particle do
8 for each dimension do
9 Use Eq. (16) to determine the velocity component;

10 move to new location by updating array p[x];
11 update particle’s best location array b[x];
12 Evaluate its current location by the Optimal Object

Function;

13 return g[x];

4.8. Allocation algorithm implementation

The procedures of the I-I value updating, the re-allocation
bounds calculation and the storage allocation algorithm are
implemented on the different components of the extended multi-
layer HDFS structure.

The MNN is in charge of updating a file’s I-I value. Since all
the incoming requests are handled by the MNN first, the MNN
has the knowledge of access status of all the existed files. Thus,
the MNN can easily calculate the I-I value for files. On the other
hand, recording the access count for a file only causes negligible
overhead. As the workload of the MNN is greatly alleviated in
the extended structure, the MNN can provide enough computing
capacity to support the updating.

In addition, the MNN is used to calculate the re-allocation
bounds for an interaction-intensive file at the beginning of each
time quantum. For the MNN, a rack of datanodes is considered as
a single storage node, so in the view of MNN there are 2n nodes,
i.e., n caches and n racks of datanodes. On the other hand, by
sending the heartbeat report, each SNN submits both its cache’s
status and the average I/O speed of the datanodes in its rack to
the MNN, hence the MNN has the knowledge of the available I/O
speed of all its 2n ‘nodes’. As the calculation of both the bounds
for an interaction-intensive file needs the I/O speed information of
all the storage nodes, the bound calculation procedure can only be
implemented on the MNN. This implementation brings negligible
workload increase to the MNN.

For the PSO-based storage allocation algorithm, both MNN and
SNN are involved. In each iteration of the PSO procedure, the MNN
is in charge of calculating the Cost value depicted in Eq. (11) and
the velocity V in Eq. (16) for each particle. To do so, both the Ψ

value in Eq. (12) and the Ω value in Eq. (13) are needed. Since the
MNN can obtain the running status of caches on the SNNs, Ψ can
be calculated locally on the MNN. Otherwise, since the datanodes
only send their heartbeat reports to a SNN, theMNN is not aware of
the existence of datanode, hence the SNN is in charge of calculating
the Ω value for each particle.

When a new iteration of PSO begins, the MNN broadcasts the
locations of each particle to all the SNNs while calculating the
Ψ value for each particle. In the mean time, SNNs calculate the
Ω value for each particle with the particle’s location information
given by the MNN. It is easy to see that the MNN and the SNNs are
working in a parallel way. Moreover, since one block can be only
allocated to one storage place, the calculation of Ω on each SNN is
independent, thatmeans all the SNNs are alsoworking in a parallel
way. As a result, the PSO-based storage allocation algorithm runs
very efficiently on the extended HDFS structure.

After the Ψ values and Ω values of all the particles are worked
out, the MNN calculates the Cost value, the velocity V and the new
position of each particle. Then, a new iteration is launched if the
stop condition is not satisfied.

5. Experiment specifications and result analysis

In this section, we are to empirically show that modifications
made to the original HDFS are able to (1) delay the time when
the namenode becomes overloaded; and (2) the system through-
put is increased for interaction-intensive tasks. The test-bed con-
sists of 130 workstations with 2 Ghz CPU/4G RAM/5400 rpm
HDD/1000 Mbps network connection. The router used are two
Quidway S9306 routers with 1152 Mpps package forwarding rate
and 6 Tbps backboard bandwidth. The test applications of the ex-
periments are pure I/O programs combinedwith theMontage pro-
gram that is dedicated to processing space photo image blocks in
parallel [4]. We repeat each experiment for 100 times and use the
average value.

The first set of experiments evaluates the performance of the
extended namenode structure with respect to the time delay
caused by the preparation for data transmissionwhen handling I/O
requests. Structures of oneMNNwith different number of SNNs are
compared in this experiment.

Fig. 2 shows the comparison of the delays caused by processing
reading requests. In the case of the original HDFS (with a single
MNN), the time delay increases quicklywith 150 ormore incoming
blocks, while with four or more SNNs, though the time delay also
increases, the increase rate is rather small even with 1050 blocks.

Fig. 3 shows the comparison on the delays of handling
writing requests. The performance differences between different
structures are much more obvious than for reading requests. As
shown in Fig. 3, when incoming file blocks increase to 330, the
single namenode structure becomes quickly saturated, i.e. time
cost for handling a writing request increases dramatically. Only
the structure with one MNN and six SNNs can handle the writing
requests without a large time increase when the number of
incoming blocks is 1050.

The second set of experiments is based on aworkstationwith an
i3 core and 4G RAM. This set of experiments compares the solution
qualities of PSOs with and without ESE. Also, the calculation time
of both the PSO and the PSO with ESE are compared. In the first
step, the Cost value of the Linear Programming (LP) solution (the
optimal solution) with realistic read/write speed is calculated. In
the second step, the Cost values of both PSOs with andwithout ESE
are calculated, respectively. Both of them are compared with the
Cost value of the LP solution.

In this experiment, the weight factors in Eq. (11) are configured
as: k1 = 0.65 and k2 = 0.35. The time quantum Q is 3 s. The
weight factors of k3 and k4 in Eqs. (12) and (13) are configured as:
k3 = k4 = 1, i.e., the reading andwriting operation share the same
weight in the interaction-intensive task. For both PSO algorithms,
the number of particles is 100 and the iteration time is 40. Based
on the configuration, the quality and speed comparison results are
illustrated in Fig. 4 and Fig. 5, respectively.

Fig. 4 shows that when the number of node increases, the
solution quality, i.e., the Cost value, for the pure PSO algorithm
without ESE decreases at a faster rate than it is for the solution of
the PSO algorithm with ESE. Even with 110 incoming blocks, the
PSO with ESE can still provide solutions with quality that is no less
than 80% of the optimal solution.

Fig. 5 illustrates the time cost for the pure PSO and the PSO
with ESE.With the PSO algorithm, for each iteration, a new velocity
vector for each particle is calculated. However, with the PSO+ ESE
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Fig. 2. Time delay of handling reading requests.
Fig. 3. Time delay of handling writing requests.
Fig. 4. Solution quality comparison of PSOs with and without ESE.
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Fig. 5. Time cost comparison of PSOs with and without ESE.
Fig. 6. Comparison of reading.

algorithm, in addition to the velocity vector calculation, for each
iteration, the ESEmethod calculates extra three parameters (i.e.,ω,
C1 and C2) based on the searching status of particles, hence
introduces some extra time overhead to the storage allocation
algorithm.

However, from Figs. 4 and 5, it is easy to see that the PSO+ ESE
can significantly improve the quality of the solution with only
slight increase in the calculation time.

The third experiment evaluates the I/O throughput of handling
interaction-intensive tasks using the original HDFS structure,
HDFS with SNN (H + S) and HDFS with SNN and cache support
(H + S + C). It is implemented on the test-bed with 124 nodes
and 6 SNNs. Storage allocation algorithms are deployed on H +

S + C structures. We consider three test cases: (1) I/O tasks
composed by reading and writing operations with large data; (2)
standard Montage program which produces a large number of
small files and has frequent I/O requests on these files; and (3) a
changedMontage programwhich containsmodifications intended
to increase (40% more) its frequency of generating I/O requests.
This experiment shares the same parameter configurations as
used for the second experiment. The results are depicted in
Fig. 6 (for reading operations) and Fig. 7 (for writing operations),
respectively.

As shown in the figures, when dealing with pure I/O tasks,
the original design of the HDFS has the best performance. This is
because the hierarchical structure and the algorithm do introduce
some overhead. However, the influence of the additional overhead
on the performance is small. When the test case is changed from
the large data I/O task to the standard Montage program and then
the modified Montage program, the performance of the original
Fig. 7. Comparison of writing.

HDFS decreases significantly. As a contrast, the performance of the
H + S + B structure becomes significantly better than both the
original HDFS and H + S structures.

6. Conclusion

This paper has presented an enhanced HDFS in which the per-
formance of handling interaction-intensive tasks is significantly
improved. The modifications to the HDFS are: (1) changing the
single namenode structure into an extended namenode structure;
(2) deploying caches on each rack to improve the I/O performance
of accessing interaction-intensive files; and (3) using PSO-based al-
gorithms to find a near optimal storage allocation plan for incom-
ing files.

Structurally, only small changes were made to the HDFS, i.e.
extending a single namenode to a hierarchical structure of
namenode. However, the experimental results show that such
a small modification can significantly improve (up to 300% on
average) the HDFS throughput when dealing with interaction-
intensive tasks and only cause slight performance degradation for
handling large size data accesses.

In this work, if the file size is larger than the available cache
space, this file has no chance of being cached even if its interaction-
intensity is high. Our immediate future work is to design a
preemptive mechanism to switch the cached files with a lower
interaction-intensity out of cache to make enough cache space for
the ones with a higher interaction-intensity. Moreover, as there
are many factors that can affect the performance of the PSO-based
algorithms, such as the interaction time, the particle swarm
population and particle mutation strategies, therefore another line
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of our futurework is to investigate these factors to further improve
the solution quality and reduce the algorithm’s operation time.
Furthermore, since the energy issues become more and more
important today, we will study the trade-offs between system
performance and energy cost in the future. In addition, we will
investigate the cache manage method such as ’wait until full’
strategy. Compared with our active switch out approach, it may
have potential advantages over average cases. We will further
investigate other newly emerged solutions. In particular, without
considering that it may need client side code modification, the
HDFS structure provided in [3] seems to have advantages over
our two-layer structure and is worth further investigation and
comparison.
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