
MINIMIZING EXECUTION COST FOR APPLICATIONS WITH DEADLINE
AND RELIABILITY CONSTRAINT IN UTILITY GRID

Li Wang, Shangping Ren, Shuhui Li
Department of Computer Science

Illinois Institute of Technology
Chicago, Illinois, United States

email: {lwang64, ren, sli38}@iit.edu

Gang Quan
Department of Electrical and Computer Engineering

Florida International University
Miami, FL, United States
email: gang.quan@fiu.edu

ABSTRACT
Grid computing has become a widely used approach to
solving large-scale complex problem because of its pow-
erful computing capability. For different computing re-
sources in a grid, their price, capability, reliability, and
availability may vary. When deploying tasks to computing
resources, how to minimize the execution cost, and at the
same time complete the task execution without violating
the user’s constraints (such as deadline, reliability, etc.) is
a challenging problem. In fact, it is a NP-hard problem. In
our work, we provide an Ant Colony System (ACS) based
approach to solving the task deployment problem. The ex-
perimental results indicate good performance of our ACS
based approach over other traditional heuristic approaches.

KEY WORDS
Utility Grid, Ant Colony System, Execution Cost Mini-
mization, Heterogeneous Computing Resources

1 Introduction

Grid computing is to share, select, and integrate resources
that are geographically distributed and have different ca-
pacity, reliability, and availability [1]. It has emerged for
solving large-scale complex problems in science, engineer-
ing, and industry. Recently, grid computing has progressed
towards a service-oriented paradigm in which users pay
for executing their applications and providers offer their
computing resources for making profit [2]. The environ-
ment with decoupling of users from providers is generally
termed as Utility Grid [3, 4].

Previous work [2, 5, 6] has proposed grid market in-
frastructures for utility grids. In these grid market infras-
tructures, resource providers aim to maximize their profit
by offering a competitive resource access cost in order to
attract consumers. Users have an option of choosing the
providers that best meet their requirements. Grid brokers
are part of the infrastructures and work as a mediator be-
tween users and grid resource providers. They perform re-
source discovery, negotiate for access costs using trading
services, map jobs to resources (scheduling), stage the ap-
plication and data for processing (deployment), start job
execution, and finally gather the results [6].

In utility grids, users interact with grid brokers and
express their requirements such as the maximum amount of
budget that they have for executing an application, the min-
imum application reliability [7], and a deadline by which
the application execution must be completed. The resource
providers express their pricing policies, reliability informa-
tion, and available time slots. The goal of the grid brokers
is to find a mapping between the application tasks and re-
sources so that the reliability and deadline of the applica-
tion are met and at the same time, the cost of the application
execution is minimized.

However, this task scheduling problem is not only
strongly NP-hard but also nonapproximable, i.e., it cannot
be approximated in polynomial time within a good lower
bound. This is because a simpler version of the problem,
i.e., minimizing the total execution cost of a set of inde-
pendent tasks within the deadline has been proved to be
strongly NP-hard and nonapproximable [8, 9]. Therefore,
the focus of our work is to design a heuristic approach to
solving this problem.

Ant Colony System (ACS) [10] is a population-based
heuristic algorithm which is biologically inspired by the be-
havior of ants in finding path from the nest to a food source.
When solving a given problem, artificial ants probabilisti-
cally construct solutions using pheromone trails and heuris-
tic information. The pheromone trails are updated accord-
ing to the quality of the solutions constructed by the ants.
The procedure is repeated until predefined ending condi-
tions are met. In our work, we develop an ACS based ap-
proach to solving this task scheduling problem.

The rest of this paper is organized as follows. We
discuss related work in Section 2. In Section 3, we define
system model and formulate the problem. We present an
ACS based approach to solving the task scheduling prob-
lem in Section 4. The experimental results are discussed in
Section 5. Finally, we conclude our work and point out the
future work in Section 6.

2 Related Work

Task scheduling problem has been extensively studied from
different aspects. For example, in [11, 12, 13], researchers
proposed different heuristic approaches to minimizing the
makespan when allocating a set of tasks to heterogeneous



processors. However, these work did not consider the cost
when scheduling the tasks.

In [14], Liu et al. presented a general-purpose re-
source selection framework that provides a resource se-
lection service for different kind of applications. This
framework identifies a suitable resource set for applications
based on the applications’ characteristics and realtime sta-
tus. He et al. proposed a QoS guided task scheduling algo-
rithm for Grid computing [15]. While Min et al. in [16]
proposed an algorithm for scheduling co-reservations on
heterogeneous resources. The main objective of these al-
gorithms is to satisfy the given requirements, i.e., meet the
execution constraints. The research presented in this pa-
per goes beyond simply meeting application’s constraints,
it also tries to optimize the applications’ objective, such as
minimizing the application’s execution cost.

In [17], Buyya et al. developed a Nimrod/G scheduler
framework which supports deadline and budget constraints.
However, they only considered independent tasks in their
model. Ju et al. in [18] proposed a genetic algorithm for
a grid workflow application to minimize its duration with
budget constraints. In [19], Yu et al. proposed a cost-based
workflow scheduling algorithm which aims to minimize the
cost while meeting the deadline constraint. This approach
only works when the number of tasks is small because it
involves factorial time to calculate local deadline for the
tasks.

The researchers mentioned above are based on the
assumptions that at all time there are unlimited resources
available and individual resource never goes down. How-
ever, the two assumptions may not always hold [7]. In this
paper, we address the task deployment problem under the
condition where the computing resources in a grid are not
always available and may fail with different failure rates.
The detailed system model and assumptions are presented
in the next section.

3 System Model and Problem Formulation

3.1 Resource Model

We use set S = {s1, s2, · · · , sk} to denote the group
of available computing resources in a grid. For differ-
ent resources, their computing capability, price, avail-
able time slots, and reliability may vary. We use

−→
P =

[p1, p2, · · · , pk] to represent the price of using resource sj
(1 ≤ j ≤ k) for a unit time, and

−→
T = [t1, t2, · · · , tk]

refers to the available time slots of the resources be-
fore the deadline D of application α, where ti =
[(b1i , u

1
i ), (b

2
i , u

2
i ), · · · , (bmi , umi )], bji and uji refer to the

start time and end time of the jth slot of resource si. We
use
−→
Λ = [λ1, λ2, · · · , λk] to denote the failure rate of each

computing resource.
For resource sj , if its running time is Lj , the reliabil-

ity of resource sj is defined as [7]

Rsj = e−λjLj (1)

3.2 Application Model

We assume that an application α has multiple tasks with
data dependencies among them. The application is repre-
sented by a directed acyclic graph (DAG) α = (N,E,D),
where N = {τ1, τ2, · · · , τn} represents the set of tasks the
application α has, E is the set of edges between the tasks.
Each edge ei,j = (τi, τj) represents the data dependency
constraint such that task τj cannot start until task τi com-
pletes its execution. D is the application’s end-to-end dead-
line.

For task τi, we use pred(τi) to denote the set of its
immediate predecessors, and succ(τi) the set of its imme-
diate successors. A task having no parent is called an entry
task and a task having no child is called an exit task. If the
application has multiple entry tasks, we create a dummy
task which is the parent task of the entry tasks. Similarly, if
the application has multiple exit tasks, we create a dummy
task as the child task of all the exit tasks. This way guar-
antees that there is only one entry task and exit task in an
application.

We further assume that the execution time of tasks
on different resources is known, and is represented by the
Task-Execution-Time matrix Wn×k = (wi,j)n×k, where
wi,j denotes the execution time of completing task τi by
resource sj . If resource sj cannot perform task τi, the exe-
cution time is +∞. For each task, it can be assigned to only
one resource for execution. In addition, as tasks’ execu-
tion time is usually much larger than the data transmission
time even the tasks are not on the same processing element.
Therefore, in our work, the data transmission time and data
transmission cost are not taken into consideration.

Due to data dependency among tasks, task τi cannot
start to execute until the execution of all its predecessors
have been finished. Furthermore, task τi cannot be exe-
cuted before its assigned resource is ready. In our work,
we assume that once the assigned computing resource is
ready and its predecessors are finished, task τi starts to ex-
ecute immediately. Therefore, for task τi, its start time (i.e.,
ST (i, j)) and finish time (i.e., FT (i, j)) on resource sj are
defined as

ST (i, j) = max{Tready(i, j), max
τg∈pred(τi)

FT (g, SI(g))} (2)

FT (i, j) = wi,j + ST (i, j) (3)

where Tready(i, j) is the ready time of resource sj to exe-
cute task τi, pred(τi) is the set of immediate predecessors
of task τi, and SI(g) refers to the index of resource where
the task τg is deployed.

3.3 Application Reliability and Execution Cost

We use Task-Deployment matrix Mn×k = (xi,j)n×k to
represent the task deployment scheme, where xi,j (xi,j ∈



{0, 1}) denotes whether task τi is allocated to resource sj .
To be more specific, xi,j = 1 indicates that task τi is de-
ployed on resource sj , and xi,j = 0 indicates the opposite.
As each task can be assigned to only one resource, we have

k∑
j=1

xi,j = 1, ∀ i = {1, 2, · · · , n} (4)

When task τi is allocated to resource sj , the execution
cost ci,j is ci,j = wi,j × pj . Based on the resource reliabil-
ity model, the probability that task τi can be successfully
executed by resource sj , i.e., the reliability of task τi is

ri,j = e−λjwi,j (5)

As a single task failure will lead to application failure,
therefore, the reliability of application is defined as

R =

n∏
i=1

k∑
j=1

xi,j × ri,j =

n∏
i=1

k∑
j=1

xi,j × e−λjwi,j (6)

and the total execution cost is

C =

n∑
i=1

k∑
j=1

xi,j × wi,j × pj (7)

where wi,j denotes the execution time of task τi by re-
source sj , pj is the price of resource sj for a unit time,
k and n refer to the number of computing resources and
tasks.

3.4 Problem Formulation

The problem of minimizing application execution cost un-
der deadline and reliability constraints, i.e., MAEC DRC
problem, can be formulated as following:

Problem 1 Given k heterogeneous computing resources
(S) with different unit price (

−→
P ), available time slots (

−→
T ),

and failure rates (
−→
Λ ), decide a task deployment Mn×k for

application α = (N,E,D) with objective:

minimize C =

n∑
i=1

k∑
j=1

xi,j × wi,j × pj (8)

Subject to:

n∏
i=1

k∑
j=1

xi,j × e−λjwi,j ≥ Rminα (9)

FT (τexit, z) ≤ D (10)
k∑
j=1

xi,j = 1, ∀i = {1, 2, · · · , n} (11)

where wi,j is the execution time of task τi on resource sj ,
FT (τexit, z) refers to the finish time of exit task τexit when
it is deployed on resource sz , and Rminα is the minimum
reliability of application α. �

4 ACS based Apprpoach to Solving the Task
Scheduling Problem

In this section, we will give the detailed implementation of
the ACS based approach to solving the MAEC DRC prob-
lem.

4.1 Pheromone Initialization

In the ACS algorithm, pheromone represents historical
search experiences of ants, and the pheromone values of
component solutions impact the resource selection when
deploying tasks. At the beginning, the pheromone values
of all solution components are initially set to η0. In our
work, we follow the approach given in [10] to set the initial
value of pheromone η0 as

η0 = (

n∑
i=1

cmaxi )−1 (12)

where n is the number of tasks, and cmaxi (cmaxi 6= +∞)
refers to the maximum execution cost of task τi on each
resource. η0 is also the minimum amount of pheromone on
each solution component.

4.2 Ants Initialization

Based on the system model, task cannot be executed until
the execution of all its predecessors have finished. There-
fore, at the beginning, ants are placed at the entry task of
the application. In other words, the entry task is the first
task to be deployed by the ants.

4.3 Solution Construction

When ants build solutions, they need to deploy each task to
a resource. There are two questions to be answered: First,
what is the order for deploying tasks? Second, what is the
criteria when choosing a resource for a task?

4.3.1 Task Deployment Order

As in the system model, we assume there may be data de-
pendency among tasks, hence, the predecessors of task τi
should be deployed to resources before task τi. In order
to reflect the dependency relationship, we use the abso-
lute deadline AD(τi) as deployment priority. The absolute
deadline refers to the latest time a task must be finished,
or the exit task will miss the application’s deadline. The
absolute deadline is recursively defined by (13).

AD(τi) = min
τj∈succ(τi)

{AD(τj)− wminj } (13)

where succ(τi) refers to the set of successors of task τi,
wminj is the minimum execution time on all resources, and
the absolute deadline of the exit task is the application’s
deadline, i.e., D.



4.3.2 Resource Selection Criteria

When deploying task τi, ant y follows the ACS transition
rule [10] defined in (14) to select resource.

sj(q) =

{
max

sj∈Vy(i)
{[η(i, j)]× [γ(i, j)]β} if q < q0

S otherwise

}
(14)

where Vy(i) is the set of resources that τi can be deployed
to by ant y, η(i, j) and γ(i, j) are the pheromone value and
heuristic information value of solution component sc(i, j),
respectively. β is an adjustable parameter which deter-
mines the relative importance of pheromone versus heuris-
tic information. q is a randomly selected number in the
interval [0,1], q0 (0 ≤ q0 ≤ 1) is a tunable parameter.
S refers to the resource which is chosen according to the
probability given by (15). Condition q ≤ q0 corresponds
to an exploitation of the current best local solution, while
q > q0 favors more exploration.

py(i, j) =
[η(i, j)]× [γ(i, j)]β∑

sj∈Vy(i)

[η(i, j)]× [γ(i, j)]β
(15)

Heuristic information γ(i, j) is a key factor for ACS algo-
rithm. It directly reflects the quality of solution compo-
nents. Similar to pheromone value η(i, j), the heuristic in-
formation γ(i, j) influences the search direction of the ants.
For different problems, the meanings of heuristic informa-
tion and rules to decide the heuristic information values are
different.

Based on the system model, our goal is to minimize
the application’s total execution cost while meeting appli-
cation’s deadline and its reliability constraints. Therefore,
when deploying tasks to the resources, we cannot simply
use the execution cost as the only criteria. Rather, we must
also consider the task’s response time and reliability.

In our work, we use the idea of the effective-gradient
based approach [20] to determine the heuristic informa-
tion value for different solution components. The effective-
gradient based approach was proposed by Toyoda in [20] to
solve the multidimentional knapsack problem (MKP), and
the experimental results show good performance of this ap-
proach.

In the MKP, there is a set of n items with values vj and
m knapsacks with capacities ci = 1. Each item j consumes
di,j (0 ≤ di,j ≤ 1) spaces from each knapsack i. The goal
is to select a subset of items to maximize the total values
while the space constraint is met.

The idea of effective-gradient based approach is that
when selecting the items, each item is evaluated in terms of
its effective gradient which is computed by using a penalty
vector, and the items are selected according to the calcu-
lated values. The effective gradient of item i is defined as

Gi =
vj

Γi × Γu
(16)

where Γu = (c1, c2, · · · , cm) is a penalty vector,
which is the used space of each knapsack, Γi =

(di,1, di,2, · · · , di,m) is the demand of item i on each knap-
sack. The product of Γi and Γu measures the penalty to use
the spaces of knapsacks.

The most important characteristic of this approach is
that when selecting items, it not only considers the value vi
and space requirement Γi on each knapsacks, it also con-
siders the amount of used space Γu in each knapsack. Ac-
cording to (16), the less available space in the knapsack,
the higher penalty will be added to the items if they require
that space. This way, the remaining space in each knapsack
will be balanced, and more items can be selected.

In the MAEC DRC problem, each solution compo-
nent is associated with execution cost, response time, and
task reliability. In addition, for application α, its maxi-
mum total execution time (i.e., end-to-end deadline) and
minimum reliability are fixed. Therefore, when applying
the idea of the effective-gradient based approach in the
MAEC DRC problem, the maximum total execution time
and minimum reliability are regarded as the knapsacks in
the MKP problem, the solution components are regarded
as the items in the MKP problem. In other words, when se-
lecting the solution components, the constraints, i.e., maxi-
mum total execution time and minimum reliability, can not
be voilated.

In the effective-gradient based method, the space of
each knapsack is set to 1, and the space required by each
item in each knapsack is normalized to a value between 0
and 1. In our problem, we also normalize both maximum
execution time and application’s minimum reliability to 1,
and for different solution components, their normalized re-
sponse time r̂t(i, j) and task reliability r̂i,j are

r̂t(i, j) = (FT (i, j)− max
τx∈pred(τi)

{FT (x, SI(x))})/D (17)

r̂i,j = (1− ri,j)/(1−Rminα ) (18)

where SI(x) refers to the resource index where the task τx
is deployed, FT (i, j) − max

τx∈pred(τi)
{FT (x, SI(x)} refers

to the response time of resource sj to execute task τi.
We use T̂u to denote the normalized used time, and

we have

T̂u = max
τx∈pred(τi)

{FT (x, SI(x))}/D (19)

Similarly, we use R̂u to denote the normalized application
reliability, and we have

R̂u = (1−
∏

τj∈deployed(τi)

rj,SI(j))/(1−Rminα ) (20)

where deployed(τi) refers to the set of tasks which are de-
ployed before task τi.

Based on the discussion above, the heuristic informa-
tion γ(i, j) of solution component sc(i, j) is defined as:

γ(i, j) =
1

ci,j
× 1

Γi,j × Γu
(21)

where ci,j refers to the execution cost if task τi is deployed
to resource sj , Γi,j = (r̂t(i, j), r̂i,j), and Γu = (T̂u, R̂u).



4.4 ACS Local update Rule

While building a solution to the MAEC DRC problem, ants
go through each task and deploy it to a resource according
to the rule given in (14). If an ant chooses resource sj to ex-
ecute task τi, the ant updates the pheromone value of η(i, j)
by applying the local update rule [10] defined by (22).

η(i, j)← (1− ρ)× η(i, j) + ρ× η0 (22)

where ρ (0 ≤ ρ ≤ 1) is the evaporation parameter which

controls the local trail decay, and η0 = (
n∑
i=1

Cmaxi )−1. As

η0 is the minimum amount of pheromone on each solution
component, based on (22), we can see that once the ant de-
ploys task τi to resource sj , the pheromone value η(i, j)
of solution component sc(i, j) will be decreased. In other
words, the local update rule reduces the convergence be-
cause less ants will deploy task τi to resource sj , hence so-
lution diversity is increased, and the probability that global
best solution can be found increases.

4.5 ACS Global Update Rule

In ACS, global update is performed after all ants have com-
pleted their solution construction. In addition, only the best
ant is allowed to globally update the pheromone of the so-
lution component it selected. In our work, according to the
objective of the problem, the quality of the solution is de-
cided by the total execution cost and whether the solution
meets the deadline and reliability constraints. Therefore,
if the solution violates the constraints, a penalty should be
considered.

We use sol(y) to denote the solution constructed by
ant y, if either the deadline or the reliability constraint is
violated, the quality of solution is defined as

Q(sol(y)) =
1

sol(y).cost
×min{D − sol(y).deadline

D

,
sol(y).reliability −Rminα

Rminα

} (23)

otherwise,

Q(sol(y)) =
1

sol(y).cost
(24)

Once the current best solution is found, the
pheromone level of the solution components chosen by
the best ant is updated by applying the ACS global update
rule [10] which is defined by (25).

η(i, j)← (1− ρ)× η(i, j) + ρ× 1

costgb
(25)

where costgb is the execution cost obtained by the best so-
lution. From (25), we can see that the pheromone levels
of all solution components in the globally best solution are
reinforced after the global update.

4.6 Termination Condition Check

The ACS based approach stops when the predefined condi-
tion is met. In our work, either the total number of itera-
tions exceeds T or the consecutive value of the execution
cost remains the same for U times, the whole process is
terminated.

5 Experimental Evaluation

In this section, we investigate the performance of the ACS
based approach when solving the MAEC DRC problem.
In particular, we compare our approach with two other ap-
proaches, i.e., Greedy-Cost approach and Deadline-Level
approach which are proposed in [17, 19, 21]. To be
more specific, Greedy-Cost approach allocates tasks to
the available computing resources with minimum cost.
While Deadline-Level approach first gets the level (i.e., the
depth of task in the DAG) of tasks, then assigns a sub-
deadline to the tasks based on their levels. When deploying
tasks, it chooses the resource with minimum execution cost
which also completes the task execution within task’s sub-
deadline.

In our experiment, we consider three common appli-
cation structures presented in [22]: pipeline, parallel, and
hybrid structure. For pipeline applications, the tasks are
executed in sequential order. For parallel applications ,
multiple pipelines are executed in parallel. While for hy-
brid structure, it is a combination of pipeline and parallel
strucutre.

5.1 Experiment Settings

When the number of tasks and resources are fixed, based on
the system model, the execution cost is affected by the ap-
plication’s end-to-end deadline and reliability constraints.
Therefore, in order to compare the performance of different
approaches, we run the test cases with different end-to-end
deadline and reliability constraints.

In our implementation, in order to reflect heterogene-
ity among tasks, we use UUnifast algorithm [23] to gener-
ate the execution time for each task. To be more specific,
assume the total execution time for n tasks is Etotal, the
UUnifast algorithm uniformly distributes Etotal to task τi
with 0 < wi < Etotal (1 ≤ i ≤ n). The algorithm guaran-
tees Etotal =

∑n
i=1 wi.

When there are k computing resources, we first obtain
the execution time wi for task τi (1 ≤ i ≤ n). We then
apply the UUnifast algorithm again to choose the execution
time of task τi on the group of computing resources sj (1 ≤
j ≤ k), i.e., wi,j . This way, the average execution time of
task τi on the computing resources remains the same, i.e.,
wi.

For all resources, their failure rate λj (1 ≤ j ≤ k)
and unit price pj (1 ≤ j ≤ k) are uniformly selected in the
range [5× 10−6, 10× 10−6] and [10, 20], respectively. For



each computing resource, the higher unit price, the lower
failure rate.

In order to apply the ACS based approach, we have
to first decide the following parameters, the number of ants
nants, pheromone evaporation rate ρ, β, and q0. In our ex-
periment, as suggested in [10], we set ρ = 0.1, and the re-
maining parameters of the ACS based approach for differ-
ent application structures are given in Table 1. All the val-
ues are obtained by using experiments. In addition, when
either the total number of iterations exceeds T = 1000
or the consecutive value of the execution cost remains the
same for U = 100 times, we stop the whole process.

Table 1: Parameter Values

Structure nants ρ β q0
Pipeline 11 0.1 13 0.6
Parallel 9 0.1 18 0.55
Hybrid 11 0.1 9 0.8

5.2 Comparison under Different Application Struc-
tures

In the first set of experiments, we compare the percentage
of successful task deployment of the three approaches un-
der different end-to-end deadlines (application’s reliability
is not considered). In this experimtal setting, we assume
the total number of computing resources and the number of
tasks in an application is 20 and 120, respectively. In addi-
tion, we set the total execution time for 120 tasks is 6000.
The actual execution time on the resources is decided by
the UUnifast algorithm.

From Fig. 1, we can see that for all three approaches,
the percentage of successful task deployment under dif-
ferent application structures increases with the end-to-end
deadline. This is because when more execution time is
given, more tasks can be executed. In addition, we can
also see that under these three structures, ACS based ap-
proach performs better than Deadline-Level approach and
Greedy-Cost approach performs the worst. The reason is
when deploying tasks, Greedy-Cost approach deploys the
tasks to the resource with minimum execution cost with-
out considering the task execution and waiting time, hence
leaving limited time for the remaining tasks. Although
Deadline-Level approach considers sub-deadline when de-
ploying tasks, the sub-deadlines are calculated based on the
tasks’ level rather than their execution time. In other words,
some tasks may be allocated more execution time, which
may lead to deadline miss for the remaining tasks. The
ACS based approach performs the best because it applies a
dynamic task deployment rule when deploying tasks, i.e.,
task deployment depends on task’s execution time and re-
maining time. In other words, tasks may be deployed to ex-
pensive resources when the remaining time is small, hence,
more tasks can be deployed.

In the second set of experiment, we compare the per-

(a) Pipeline Structure

(b) Parallel Structure

(c) Hybrid Structure

Figure 1: Percentage of successful task deployment under
different end-to-end deadlines

centage of successful task deployment of these three ap-
proaches under different application’s minimum reliability
(reliability bound). The experimental setting is the same as
given in the first set of experiment except the end-to-end
deadline is not considered.

Fig. 2 shows how the percentage of successful task
deployment changes with application’s minimum reliabil-
ity. From Fig. 2, we can see that when application’s mini-
mum reliability increases, the percentage of successful de-
ployment drops. This is because obtaining higher appli-
cation’s reliability usually requires shorter execution time,
which may not be achieved when all tasks cannot be fin-
ished within the desired execution time even they are de-
ployed to the resources with minimum execution time.

Another observation from Fig. 2 is that the percent-
age of successful task deployment of ACS based approach
is much larger than the other two approaches. The main
reason is that for computing resources, their high reliabil-
ity also comes with high unit price, as both Greedy-Cost
approach and Deadline-Level approach deploy tasks to the
resources with minimum cost, therefore, the deployment
scheme obtained by these two approaches has low applica-
tion reliability, which may violate the application’s mini-
mum reliability.



(a) Pipeline Structure

(b) Parallel Structure

(c) Hybrid Structure

Figure 2: Percentage of successful task deployment under
different reliability bound

In the third set of experiments, we compare the exe-
cution cost obtained by different approaches. For different
approaches, their execution cost, finish time, and applica-
tion reliability may not be the same even under the same
experimental setting. In other words, although an approach
obtains the smallest execution cost, its finish time may be
larger than the maximum allowed execution time. There-
fore, in this experiment, we only consider the case in which
all approaches obtain the feasible deployment scheme un-
der the same experimental setting.

Fig. 3 shows the execution cost obtained by differ-
ent approaches under different structures when the appli-
cation’s end-to-end deadline increases. From Fig. 3, we
can see that Greedy-Cost approach performs best while our
ACS based approach performs worst. This is because we
only compare the successful deployments. As Greedy-Cost
approach always deploys tasks to the resources with min-
imum execution cost, therefore, if the deployment is suc-
cessful, the execution cost obtained by the Greedy-Cost ap-
proach is also the minimum execution cost. From Fig. 3,
we can see the execution cost obtained by ACS based ap-
proach is close to the minimum execution cost (the maxi-
mum difference is less than 3% under all three structures.),
which indicates good performance of the ACS based ap-

(a) Pipeline Structure

(b) Parallel Structure

(c) Hybrid Structure

Figure 3: Execution Cost under different end-to-end dead-
lines

proach.

6 Conclusion

Grid computing has emerged for the solution of larger-scale
complex problems in different fields. However, deploying
dependent tasks to computing resources with the goal of
minimizing execution cost is difficult to achieve. In our
work, we provide an ACS based approach to solving the
task deployment problem, and the results indicate good per-
formance of our ACS based approach over other heuristic
approaches.

In our work, we only consider minimizing the exe-
cution cost from the perspective of users, how to maxi-
mize the profit of resource providers is another interesting
and practical problem. This problem will be discussed and
solved in our future work.

Acknowledgement

The work is supported in part by NSF CAREER CNS
0746643 and NSF CNS 1018731.



References

[1] I. Foster and C. Kesselman, eds., The grid: blueprint
for a new computing infrastructure. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1999.

[2] D. Neumann, J. Stoesser, A. Anandasivam, and
N. Borissov, “Sorma - building an open grid market
for grid resource allocation,” in Proceedings of the
4th international conference on Grid economics and
business models, pp. 194–200, 2007.

[3] S. K. Garg, R. Buyya, and H. J. Siegel, “Scheduling
parallel applications on utility grids: time and cost
trade-off management,” in Proceedings of the Thirty-
Second Australasian Conference on Computer Sci-
ence, pp. 151–160, 2009.

[4] J. Yu and R. Buyya, “Scheduling scientific workflow
applications with deadline and budget constraints
using genetic algorithms,” Sci. Program., vol. 14,
pp. 217–230, Dec. 2006.

[5] J. Altmann, C. Courcoubetis, J. Darlington, and
J. Cohen, “Gridecon - the economic-enhanced next-
generation internet,” in Proceedings of the 4th inter-
national conference on Grid economics and business
models, GECON’07, (Berlin, Heidelberg), pp. 188–
193, Springer-Verlag, 2007.

[6] R. Buyya, D. Abramson, and J. Giddy, “A case for
economy grid architecture for service oriented grid
computing,” in Proceedings of the Heterogeneous
Computing Workshop, 2001.

[7] Y. Dai, M. Xie, and K. Poh, “Reliability of grid ser-
vice systems,” Computers & Industrial Engineering,
vol. 50, no. 1C2, pp. 130 – 147, 2006.

[8] J. D. Ullman, “Np-complete scheduling problems,” J.
Comput. Syst. Sci., vol. 10, pp. 384–393, June 1975.

[9] S. Kumar, K. Dutta, and V. Mookerjee, “Maximizing
business value by optimal assignment of jobs to re-
sources in grid computing,” European Journal of Op-
erational Research, vol. 194, no. 3, pp. 856 – 872,
2009.

[10] M. Dorigo and L. Gambardella, “Ant colony sys-
tem: a cooperative learning approach to the traveling
salesman problem,” Evolutionary Computation, IEEE
Transactions on, vol. 1, pp. 53 –66, apr 1997.

[11] L. Wang, H. J. Siegel, V. R. Roychowdhury, and A. A.
Maciejewski, “Task matching and scheduling in het-
erogeneous computing environments using a genetic-
algorithm-based approach,” J. Parallel Distrib. Com-
put., vol. 47, pp. 8–22, November 1997.

[12] R. Armstrong, D. Hensgen, and T. Kidd, “The rel-
ative performance of various mapping algorithms is

independent of sizable variances in run-time predic-
tions,” in IEEE Heterogeneous Computing Workshop,
pp. 79–87, 1998.

[13] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on nonidentical proces-
sors,” J. ACM, vol. 24, pp. 280–289, April 1977.

[14] C. Liu, L. Yang, I. Foster, and D. Angulo, “Design
and evaluation of a resource selection framework for
grid applications,” in Proceedings of the International
Symposium on High Performance Distributed Com-
puting, pp. 63– 69, 2002.

[15] X. He, X. Sun, and G. von Laszewski, “Qos guided
min-min heuristic for grid task scheduling,” J. Com-
put. Sci. Technol., vol. 18, pp. 442–451, July 2003.

[16] R. Min and M. Maheswaran, “Scheduling co-
reservations with priorities in grid computing sys-
tems,” in Proceedings of the International Symposium
on Cluster Computing and the Grid, pp. 266–267,
2002.

[17] R. Buyya, M. Murshed, and D. Abramson, “A dead-
line and budget constrained cost-time optimisation al-
gorithm for scheduling task farming applications on
global grids,” in Conf. on Parallel and Distributed
Processing Techniques and Applications, 2001.

[18] J. Yu and R. Buyya, “A budget constrained scheduling
of workflow applications on utility grids using genetic
algorithms,” in Workshop on Workflows in Support of
Large-Scale Science, pp. 1 –10, 2006.

[19] J. Yu, R. Buyya, and C. K. Tham, “Cost-based
scheduling of scientific workflow application on
utility grids,” in Proceedings of the First Interna-
tional Conference on e-Science and Grid Computing,
pp. 140–147, 2005.

[20] Y. Toyoda, “A simplified algorithm for obtain-
ing approximate solutions to zero-one programming
problems,” Management Science, vol. 21, no. 12,
pp. 1417–1427, 1975.

[21] R. Buyya, J. Giddy, and D. Abramson, “An evaluation
of economy-based resource trading and scheduling on
computational power grids for parameter sweep ap-
plications,” in The Second Workshop on Active Mid-
dleware Services, Kluwer Academic Press, 2000.

[22] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta,
M.-H. Su, and K. Vahi, “Characterization of scien-
tific workflows,” in the 3rd Workshop on Workflows in
Support of Large-Scale Science (WORKS08), 2008.

[23] E. Bini and G. C. Buttazzo, “Biasing effects in
schedulability measures,” in Proceedings of the
16th Euromicro Conference on Real-Time Systems,
pp. 196–203, 2004.


