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Abstract—In this paper, we address the resource minimization
problem for DAG-based real-time applications using computer
clouds to: (1) guarantee the satisfaction of a real-time applica-
tion’s end-to-end deadline; (2) ensure the number of computers
allocated to the application is minimized; and (3) under allocated
resources, minimize the application’s makespan. We first give
lower and upper bounds for resources needed to guarantee the
satisfaction of a real-time application’s deadline. Based on the
bounds, we develop a heuristic algorithm called minimal slack
time and minimal distance (MSMD) algorithm that finds the min-
imum number of computers needed to guarantee the application’s
deadline and schedules tasks on the allocated resources so that the
application’s makespan is minimized. Our experimental results
show that the MSMD algorithm can guarantee applications’ end-
to-end deadlines with less resources compared with other heuristic
scheduling algorithms existed in the literature. In addition, under
the minimal allocated resources, the MSMD algorithm can, on
average, reduce an application’s makespan by 10% of its deadline.

I. INTRODUCTION

The advancement of computer and network technology
has brought the world into a new era of computer clouds.
The “pay-as-you-go” business model and the service oriented
models allow users to have “unlimited” resources if needed
and free from infrastructure maintenance and software up-
grades. Cloud services are currently among the top-ranked high
growth areas in Computing and are seeing an acceleration in
enterprise adoption with the worldwide market predicted to
reach more than $131b in 2013 [19], [1]. Many different types
of applications have been deployed on clouds. For instance,
both Argonne National Laboratory and Fermi National Accel-
erator Laboratory provide their cloud platforms for scientific
applications [10], [5], real-time applications such as online
media streaming applications [15], interactive real-time e-
learning [2], and online banking systems [18] are also seeking
opportunities to utilize computer clouds.

Although the new cloud technology and the “pay-as-you-
go” business model have brought new opportunities to many
application domains, there are many technical challenges yet to
be solved for service providers. One of the major issues faced
by all service providers is, under their limited resources, how
to guarantee the quality of services provided to their users
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and at the same time make maximum profit. There are two
main routes to reach this goal, i.e., via maximizing system
throughput or minimizing operational cost. Researchers have
made significant efforts to maximize throughput by maxi-
mizing resource utilization [13] and minimizing applications’
makespan [20], [4], [14], and to minimize operational cost
by reducing power/energy consumption [12], [17]. However,
the research on maximizing system throughput often focuses
on when the number of resources are fixed and known. For
instance, for the application makespan minimization problem
that many researchers have been working on [20], [4], [14],
their solutions are based on the assumption that the available
resources are given.

However, in a cloud environment, the number of computers
can be dynamically configured based on the user’s demand.
For a real-time application, meeting the application’s deadline
requirement is critical, but there is no incentive to finish the
application earlier. On the other hand, from service provider’s
perspective, reducing applications’ makespan cannot only save
computer power consumption cost, but also can increase the
system’s throughput. Hence, if the cloud can guarantee the
application’s deadline requirement with minimal number of re-
sources and reduce application’s makespan without increasing
the minimal number of resources, both application clients and
the computer cloud service providers will benefit the most.

The work presented in this paper addresses the resource
minimization issue for real-time applications using computer
clouds. In particular, for a given distributed real-time appli-
cation with an end-to-end deadline constraint and a computer
cloud with an unspecified number of computers, decide the
number of computers needed and a schedule on each com-
puter to guarantee: 1) the application’s end-to-end deadline is
satisfied, 2) the number of computers needed for executing
the application tasks is minimized, and 3) under the min-
imized number of computers, the application’s makespan is
minimized.

The remainder of the paper is organized as follows: Sec-
tion II discusses related work. In Section III, we first introduce
the models and terms, then formally define the resource
minimization problem the paper is to address. Section IV
presents an analysis to quickly calculate the resource bounds
needed to guarantee a DAG-based real-time application’s end-
to-end deadline. Section V gives a heuristic algorithm to solve
the problem defined in Section III. Experimental evaluations
are presented in Section VI. We conclude and point out future



work in Section VII.

II. RELATED WORK

The essence behind resource minimization and application
makespan minimization problems can be drilled down to a task
scheduling problem which is proven to be NP-complete when
there are more than two computers [7]. Thus, many heuristic
approaches have been proposed. List scheduling is one of the
basic approaches used for makespan minimization and it has a
(2− 1

m ) approximation to the optimal makespan [8], where m
is the number of processors. The idea of list scheduling is to list
tasks in an order and then schedule tasks from the ordered list.
Hence, ordering the task list becomes critical when designing
list based algorithms.

Researchers have made significant efforts on ordering
tasks and have developed many list scheduling based heuris-
tic algorithms to solve application makespan minimization
problems [6], [20], [4]. A well-known list scheduling based
algorithm is the Coffman-Graham (CG) algorithm [6]. The
CG algorithm takes a set of partially ordered tasks and assigns
task priorities based on their order. The CG schedules the task
with the highest priority in the list to the computer that has
the earliest available time at the time of scheduling. When
there are only two homogeneous computers, the CG scheduling
algorithm is proven to be optimal [6].

However, the CG algorithm cannot be directly applied to
DAG-based applications unless the dependencies among tasks
in a DAG-based application are resolved. One commonly used
approach to resolve task dependencies is to list the DAG-
based application in a topological order. Another commonly
used approach is to assign and list tasks by their priorities.
The prioritization scheme is based on when each task finishes,
i.e. counting from the bottom of the DAG-based application
task graph (blevel), or when each task starts, i.e. counting
from the top (tlevel). Many existing makespan minimization
algorithms adapted this approach as their prioritization basis.
The heterogeneous-earliest-finish-time (HEFT) algorithm [20]
is one of them and it uses the summation of a task’s blevel and
tlevel values as its priority and hence provides a O(|V |2m)
list-based heuristic algorithm for minimizing the makespan.

Lee et al. improved the HEFT algorithm by taking the
energy consumption into consideration and proposed an en-
ergy conscious scheduling (ECS) algorithm [11]. The ECS
algorithm has a similar performance on makespan reduction
compared to HEFT, but ECS reduces energy consumption by
10%. The duplication based bottom up scheduling (DBUS)
algorithm [4] is another heuristic algorithm that takes the blevel
and tlevel approach as the basis of its prioritization method.
Unlike the HEFT algorithm, the DBUS approach takes the
tlevel and an additional static top level stlevel as the tasks’
priorities. The DBUS also duplicates tasks on each machine
at the scheduling phase and thus is a O(|V |2m2) heuristic.

The research briefly summarized above has been mainly
focused on how to schedule tasks under fixed amount of
resources to maximize the system’s throughput and minimize
an application’s makespan, rather than to minimize the number
of computers needed to guarantee a real-time application’s
deadline. In fact, it is possible that an application can be

scheduled on n computers with the same makespan as on
m (m > n) computers by different heuristic algorithms.

Research on resource bound problem for DAG-based real-
time applications started in the early 1960’s [9] and we
have obtained some results since then [16], [3]. However,
neither T.C. Hu’s original lower bound [9] nor Ramamoor-
thy’s improvement [16] can be directly applied to the DAG-
based application with different task execution times if tasks
are not allowed to migrate among computers. Al-Mouhamed
further extended and improved the resource lower bound with
the consideration of heterogeneous task execution time and
communication cost [3]. However, Al-Mouhamed’s method to
calculate the lower bound is too expensive to be applicable
in practice for large scale applications and for on-line cloud
applications.

In this paper, we give resource bounds that though may
not be as tight as desired, they can be quickly calculated. In
addition, we present a heuristic algorithm to find the minimal
number of computers needed and schedule application tasks
on the allocated minimal number of computers so that the
applications’ makespan is also minimized. The CG, HEFT,
DBUS and ESC algorithms from the literature will be used as
base lines to evaluate our proposed approach.

III. PROBLEM FORMALIZATION

In this section, we first introduce models and terms the
work is based on and then formulate the resource minimization
problem the paper is to address.

A. Application Model

A distributed real-time application A is modeled as a
weighted direct-acyclic-graph (DAG) G(V,E), where each
task τi ∈ A is represented by a node vi ∈ V , the weight
w(τi) on the node vi represents task τi’s worst execution time
(WECT) on a unit speed computer, and an edge (vi, vj) ∈ E
represents dependency between τi to τj . A task can only start
after all its predecessors complete. Each application is given a
release time TR and a relative end-to-end deadline TD. Hence,
the application’s absolute end-to-end deadline is TR + TD.

Tasks without any predecessors or any successors are
defined as entry tasks and exit tasks, respectively. For conve-
nience, we assume each application has one entry task denoted
as τentry and one exit task denoted as τexit 1. Fig. 1 gives
an example of a DAG-based application task graph, where
τentry = τ0 and τexit = τ10.

B. System Model

A computer cloud is modeled as a set of networked
computers, i.e. C = {c1, . . . , cM}. We assume computers
in the cloud are homogeneous with unit speed. Hence task
execution time does not change when it is deployed to different
computers in the cloud. Task executions are non-preemptive
and each computer can only execute one task at any given

1If an application has multiple entry tasks or multiple exit tasks, we add a
virtual entry task and a virtual exit task with zero execution time and connect
from the virtual entry task to all actual entry tasks and from all actual exit
tasks to the virtual exit task, respectively.



Fig. 1: An Example of DAG-Based Application Task Graph
with End-to-End Deadline D=60

time. Unprocessed tasks are buffered in a task queue by the
computers the tasks are assigned to.

For a given application A = {τ1, . . . , τn} and a set of
computers where application tasks are deployed on, a Boolean
function S(τi, cj) defines whether a task τi ∈ A is deployed
on computer cj . In other words, if a computer cj is used by
application A, then ∃τi ∈ A such that S(τi, cj) = 1. We use
N(A) to denote the resource set utilized by application A:

N(A) = {cj |∃τi ∈ A, cj ∈ C ∧ S(τi, cj) = 1} (1)

C. Definitions

Given a DAG-based application A = {τ1, . . . , τn} with re-
lease time TR and relative deadline TD, and its corresponding
task graph G(V,E), we define the following terms.

Predecessors (pred(τi)) and Successors (succ(τi)): For
task τi ∈ V , its predecessor and successor task sets are defined
below:

pred(τi) = {τj |τj ∈ A ∧ (τj , τi) ∈ E} (2)
succ(τi) = {τj |τj ∈ A ∧ (τi, τj) ∈ E} (3)

Application Sequential Execution Time (Tseq ): The se-
quential execution time of application A is defined as the
summation of all composing tasks’ execution time.

Task Earliest Start Time (EST (τi)) and Latest Finish
Time (LFT (τi)): For a given task τi ∈ V , its earliest start
time and latest finish time are recursively defined as follows:

EST (τi) =

{
TR if τi = τentry

max
τk∈pred(τi)

{EST (τk) + wk} otherwise

(4)

LFT (τi) =

{
TR + TD if τi = τexit

min
τk∈succ(τi)

{LFT (τk)− wk} otherwise

(5)
A task’s earliest start time and latest finish time are only based
on the application’s task graph, its release time and relative
deadline. They are independent of how tasks are assigned to
computers.

Task Actual Start Time (AST (τi)) and Actual Finish
Time (AFT (τi)): A task’s actual start time (AST (τi) ) and
actual finish time (AFT (τi)) are defined as when the task
is dispatched for execution and completed its execution on
a computer, respectively. It can be different from its earliest

start time and latest finish time. In fact, we have AFT (τi) =
AST (τi) + wi and AST (τi) ≥ EST (τi).

Task Ready Time (ready(τi)): A task’s ready time
ready(τi) is the latest actual finish time of all its predecessors.
The definition is given below:

ready(τi) = max
τk∈pred(τi)

{AFT (τk)} (6)

Task Maximal Slack Time (mslack(τi)): For a given task
τi ∈ V , its maximal slack time is defined as

mslack(τi) = LFT (τi)− (EST (τi) + w(τi)) (7)

Intuitively, the maximal slack time indicates how long a task
can afford to wait before causing a deadline violation. For task
τi, mslack(τi) = 0 means τi must start at its earliest start time
or it will cause the application to miss its end-to-end deadline.

Task Topological Level (Lev(τi) ): Given a DAG-based
application A, its task τi’s topological level Lev(τi) is defined
as:

Lev(τi) =

{
0 if τi = τentry

max
τk∈pred(τi)

{Lev(τk)}+ 1 otherwise

(8)

Critical Path Pc and Critical Path Execution Time (TC)
: For a given application task graph, a path execution time
is defined as the summation of its composing task’s execution
time. A critical path, denoted as Pc, is a path that starts at the
entry task τentry, ends at the exit task τexit, and has the longest
path execution time. There may exist more than one critical
paths in an application’s task graph. However, by definition,
every critical path has the same path execution time. We denote
the critical path execution time as TC .

Schedulable Application : For a given application A with
relative deadline TD, the application is schedulable if and only
if its critical path execution time satisfies TC ≤ TD.

Computer Earliest Available Time (av(c)): For a given
computer c, if its totally ordered task queue is Qc =
{τ c1 , . . . , τ ch}, then computer c’s earliest available time for a
new task τi not in the queue can be calculated as follow:

av(c) = AFT (τ ch) = 0 n = 0
max {AFT (τ ch−1), ready(τ ch)}

+w(τ ch) n > 0
(9)

Table I gives the EST , LFT , mslack , Lev , and whether
a task is on a critical path for the example task graph given
in Fig. 1. The concept of task priority will be discussed in
Section V.

D. Problem Formulation

Based on the models and definitions presented in the
earlier subsections, we formally define the problem we are to
address, i.e. resource minimization for real-time applications
using computer clouds. To achieve the goal, we take two
steps. The first step is to minimize the number of computers
needed to guarantee the satisfaction of a DAG-based real-time
application’s end-to-end deadline. Once the minimal number of



TABLE I: Example Application’s Task Property

Tasks EST LFT mslack CP Levels Priority
τ0 0 17 17

√
0 1

τ1 0 37 32 1 4
τ2 0 28 18 1 3
τ3 0 37 17

√
1 2

τ4 10 41 18 2 6
τ5 20 52 17

√
2 5

τ8 20 60 18 2 7
τ6 23 47 18 3 9
τ7 35 60 17

√
3 8

τ9 29 60 18 4 10
τ10 43 60 17

√
5 11

computers needed is decided, our second step is to minimize
the application’s makespan under the minimized number of
resources decided by the first step.

Objective 1: Minimize the Number of Resources Needed

Given an application A = {τentry, · · · , τi, · · · , τexit} with
release time TR and relative deadline TD, its corresponding
task graph G(V,E), and sufficient set of N computers, deter-
mine a subset of computers of size M,M ≤ N , such that

Objective 1: minM

Subject to: AFT (τexit) ≤ TR + TD (10)

and ∀τi ∈ A,
M∑
j=1

S(τi, cj) = 1 (11)

where S(τi, cj) = 1 if and only if task τi is assigned to
computer cj ∈ C(A). The first constraint given by (10)
guarantees end-to-end deadline satisfaction and the second
constraint given by (11) ensures that each task can only be
deployed to one computer.

Objective 2: Minimize Makespan under Allocated Resources

Once the minimum number of computers (M ) needed to
guarantee the application’s end-to-end deadline is determined,
our next task is to minimize the application’s makespan on the
M computers:

Objective 2: min AFT (τexit)

Subject to: ∀τi ∈ A,
M∑
j=1

S(τi, cj) = 1 (12)

IV. RESOURCE BOUNDS

As stated in the previous section, one of our objectives
is: for a given application, determine the minimum number of
computers needed to guarantee the application meet its end-to-
end deadline. In this section, we study the attributes of a DAG-
based application and determine the bounds for the minimum
number of computers needed.

Lemma 1: Given a DAG-based real-time application A, let
the application’s release time and relative end-to-end deadline
be TR and TD, respectively, its sequential execution time be
Tseq , critical path execution time be TC , and the minimal
number of computers needed to guarantee the application’s

end-to-end deadline be M . If the application is schedulable,
i.e. TC ≤ TD, then we have:

M ≥ dTseq
TD
e (13)

Proof: We prove Lemma 1 by contradiction. If Tseq ≤
TD, we have dTseq

TD
e = 1. As the application’s sequential

execution time is less than its deadline, i.e. Tseq ≤ TD,
trivially, with M = 1 computer, we can guarantee the appli-
cation’s deadline. If Tseq > TD, assume the minimum number
of computers needed to guarantee AFT (τexit) ≤ TR + TD
is M ′. Let M ′ < dTseq

TD
e. Given M ′ computers, the best

scenario is that the work load is evenly distributed to the
M ′ computers and all tasks are executed without waiting.
Under such scenario, the application’s makespan is TR+

Tseq

M ′ ,
which is the earliest possible time the application can com-
plete. Hence, we have AFT (τexit) ≥ TR +

Tseq

M ′ . Since M ′

is a positive integer, we have M ′ <
Tseq

TD
, which implies

TD <
Tseq

M ′ .From the conclusion AFT (τexit) ≥ TR +
Tseq

M ′ , we
have AFT (τexit) > TR + TD, contradicting the assumption
that AFT (τexit) ≤ TR + TD.

Lemma 2: Given a DAG-based real-time application A, let
the application’s release time and relative end-to-end deadline
be TR and TD, respectively, its corresponding task graph
G(V,E), critical path execution time be TC , level of exit task
Lev(τexit) and the number of computers needed to guarantee
the application’s end-to-end deadline be M . If the application
is schedulable, i.e. TC ≤ TD, then we have:

M ≤ |V | − Lev(τexit) (14)

where |V | is the number of tasks in the application.

Proof: It is obvious that if each task is scheduled to an
idle computer and each computer only executes one task, ap-
plication A can finish with a makespan of TC . Since TC ≤ TD,
application A can finish before its end-to-end deadline under
|V | computers. Based on the definition of task’s topological
level given in Section III, there must exists a path Pi that
consists of at least Lev(τexit) + 1 tasks and no two tasks
are from the same level. Since path Pi must be sequentially
executed, dispatching all tasks on Pi to the same computer
will not affect the application’s makespan. Hence, we can at
least reduce Lev(τexit) computers from total |V | computers.
As a result, M = |V |−Lev(τexit) computers are sufficient to
guarantee an application’s end-to-end deadline.

Combining Lemma 1 and 2, we have the following
theorem.

Theorem 1: Given a DAG-based real-time application A,
let the application’s release time and relative end-to-end
deadline be TR and TD, respectively, its corresponding task
graph G(V,E), sequential execution time be Tseq , critical
path execution time be TC , level of exit task Lev(τexit) and
the minimal number of computers needed to guarantee the
application’s end-to-end deadline be M . If the application is
schedulable, i.e. TC ≤ TD, we have:

dTseq
TD
e ≤M ≤ |V | − Lev(τexit) (15)



In the next section, we present a heuristic scheduling
algorithm based on the theorem.

V. MINIMAL SLACK TIME AND MINIMAL DISTANCE
(MSMD) BASED SCHEDULING

In this section, we introduce a heuristic approach for the
resource minimization problem formulated in Section III-D.
The basic idea of our heuristic approach is to search for a
schedule that satisfies a given application’s deadline from the
minimal number of resources given by (13). Once a schedule
is found, the number of computers used is the least. The search
for a possible schedule has two phases: task prioritization
phase which is based on an application tasks’ topological levels
and slack time, and task scheduling phase which is based on
the minimal distance between the resources’ available time and
the tasks’ ready time.

Given an application’s task graph G, Algorithm 1 outlines
our heuristic approach, where Line 1 prioritizes tasks in
the given application; Line 3 to Line 8 search for minimal
resources needed to satisfy the deadline using the minimal
slack time and minimal distance (MSMD) heuristic scheduling
algorithm. We discuss task prioritization and the MSMD
scheduling algorithm in the next two subsections.

Algorithm 1: Schedule Searching
Input : Application: G(V,E)
Output: A schedule satisfies AFT (τexit) ≤ TR + TD

1 L← prioritize(G)// Ordered list;
2 min← dTseq

TD
e;

3 do
4 T [min]← {0} // av(c) ;
5 S[min]← {∅} // Computers’ job queues;
6 AFT (τexit)← MSMD(G,T [min], S[min], L);
7 min++;
8 while AFT (τexit) ≤ TR + TD;
9 return S[min]

A. Minimal Slack Time based Prioritization

The goal of task prioritization is to assign a priority to every
task in the application. To ensure task dependency relations are
not violated, we assign task priorities based on task topological
levels and their minimal slack time. In particular, tasks at a
lower topological level have higher priorities than tasks at a
higher level; for tasks at the same topological level, tasks with
a smaller slack time are given higher priorities. If two tasks at
the same level have the same slack time, we arbitrarily assign
one a higher priority. The task topological levels and their
priorities given in Fig. 1 are shown in Table I. Tasks are then
sorted by their priorities in a decreasing order and stored in a
ordered list L.

Intuitively, a leveled graph ensures that all predecessor
tasks of a task τi are scheduled before τi. The minimal slack
time based priority assignment ensures that the tasks that are
more urgent are executed earlier. Once tasks are sorted, starting
from minimal number of resources given by (13), we iteratively
increase the number of computers until a schedule that meets
the application’s end-to-end deadline is found.

B. Minimal Slack time and Minimal Distance Scheduling
Algorithm

For a given number of computers, the goal of the minimal
slack time and minimal distance (MSMD) scheduling algo-
rithm is to schedule a given application to a set of allocated
computers so that the application’s makespan is minimized.

As tasks on a critical path cannot be executed concurrently,
assigning all critical tasks to the same computer does not
increase the application’s makespan. The question is how to
assign tasks that are not on the critical path. One simple
approach is to schedule these tasks to the computer that has the
earliest available time at the time of scheduling. Again, take
the application task graph given in Fig. 1 as an example, if we
have three computers, based on the priority given in Table I,
at time 0, as av(c1) = av(c2) = av(c3) = 0, τ3 is scheduled
to c1, τ2 to c2, and τ1 to c3, respectively. At time 10, av(c3) is
the least and hence τ4 is scheduled on c3. Fig. 2(a) shows the
schedule produced by the approach. We denote this approach
as minimal slack and minimal available time based (MSMA)
scheduling algorithm.

However, a task τi’s start time on a computer cj not only
depends on the value of av(cj), but it also depends on its
own ready time. Hence, if both computers cj and ck satisfy
av(cx) ≤ ready(τi), task τi can be assigned to either one of
them. For instance, in our application graph given in Fig. 1,
τ4 can be deployed either on c2 or c3. However, the decision
may affect the following tasks, such as τ8 in Fig. 2(a). If τ4 is
scheduled on c2 rather than being scheduled on the computer
with the earliest available time (c3), τ8 can start at time 20
which can reduce the application’s makespan by 3 time units.
The two different schedules are depicted in Fig. 2(b).

(a) MSMA Approach (b) MSMD Approach

Fig. 2: A Schedule for Task Graph (Fig.1)

We introduce the concept of distance into our scheduling
algorithm. The distance is used to indicate how close a task’s
ready time is to the computer’s earliest available time. We
formally define the distance (Dis(τi, cj)) between a task τi’s
ready time (ready(τi)) and a computer cj’s available time
(av(cj)) as follows:

Dis(τi, cj) =

{
av(cj) if ready(τi) < av(cj)
ready(τi)− av(cj) otherwise

(16)



Rather than schedule tasks to the computer with the earliest
available time, we assign tasks to the computer with minimal
distance from its ready time. Doing so will provide more
chances for tasks with lower priorities to start at their earliest
start time. Furthermore, it allows some non-critical tasks
share the same computer with critical tasks and hence further
reduces application’s makespan when other computers’ earliest
available time become larger than the critical task computer
at the time of scheduling. As shown in Fig. 2(b), with the
minimal slack time and minimal distance (MSMD) approach,
τ4 is scheduled on c2. Hence τ8 can start at its earliest start
time of 20, which in turn reduces the application’s makespan
to 43 compared to 45 produced by the MSMA approach.

For a given application with task graph G(V,E), ordered
list L, and min number of computers, the MSMD scheduling
algorithm is given in Algorithm 2. In the algorithm, Line
3 to Line 4 assign tasks on the critical path to the same
computer, i.e. c0, Line 7 to Line 20 find the computer that
has the minimal distance from its available time to the current
task’s ready time. Line 7 to Line 9 and Line 17 to Line
20 enable uncritical tasks to be scheduled on critical task
computer without interfering critical tasks. The complexity of
the MSMD algorithm is O(|V |2m). We evaluate the proposed
algorithm in the following section.

Algorithm 2: MSMD(G,T, S, L)
1 Pc ← G’s critical path;
2 for i← 0 to |L| − 1 do
3 if L[i] ∈ Pc or m = 1 then
4 Assign L[i] to S[0]
5 end
6 else
7 T [0]← max {av(0), T [0]};
8 minDisComp← 0;
9 distance← Dis(L[i], 0);

10 for j ← 1 to m− 1 do
11 T [j] = av(S[j]);
12 if Dis(L[i], j) < distance then
13 distance← Dis(L[i], j);
14 minDisComp← j ;
15 end
16 end
17 Assign L[i] to minDisComp;
18 if minDisComp = 0 then
19 T [0]← T [0] + w(L[i])
20 end
21 end
22 end
23 return AFT (τexit)

VI. EXPERIMENTAL EVALUATIONS

The purpose of the experiments is to evaluate the developed
MSMD algorithm by comparing it with four other algo-
rithms published in the literature. They are the heterogeneous-
earliest-finish-time (HEFT) algorithm [20], duplication-based
bottom up scheduling (DBUS) algorithm [4], energy conscious
scheduling (ECS) algorithm [11] and Coffman-Graham (CG)
algorithm[6].

A. Experiment Settings

The DAG-based applications are randomly generated based
on two indexes, i.e. the inverse parallel index defined as
Lev(τexit )
|V | and the deadline tightness index defined as TD

TC
.

The inverse parallel index is used to control the shape of the
application task graph. A task graph with a low inverse parallel
index indicates that many tasks can be executed in parallel
and high inverse index indicates that many tasks need to be
executed sequentially. The difference between an application’s
end-to-end deadline and its critical path execution time mea-
sures how tight the deadline is. Based on the two attributes of
a task graph, we classify our applications into five different
categories: tight-highly-parallel (TH), tight-low-parallel(TL),
relaxed-highly-parallel (RH), relaxed-low-parallel (RH), and
fully-random (FR). The classification allows us to explore
how the task graph shape and the deadline tightness of the
application impact the resource usage. Under each category,
800 different application task graphs are randomly generated.

B. Evaluation Criteria

One of the main objectives of our algorithm is to find the
minimum number of computers needed to complete a given
application’s execution before its deadline. Hence, the first
criterion to evaluate the performance of an algorithm is how
many computers it uses to ensure an application finishes before
its end-to-end deadline. We introduce the concept of resource
reduction rate to indicate how many resources are reduced
from the resource upper bound given by (14). It is defined as
below:

Res. Red. Rate =
Upper Bound - Actual Res. Used

Upper Bound
(17)

The second goal of our algorithm is to minimize the
makespan of an application under the given minimal resources.
One way to evaluate the effectiveness of minimizing makespan
is to see how much time is reduced from an application’s dead-
line. We define makespan reduction rate for the evaluation.
For a given application A with its release time TR and relative
deadline TD, the makespan reduction rate is defined as:

MS Red. Rate =
TR + TD −AFT (τexit)

TD
(18)

where AFT (τexit) is the actual finish time of application A.

C. Compare to the Optimal Solution

Since the proposed MSMD scheduling algorithm is a
heuristic algorithm, the most straightforward way to evaluate
its performance is to compare with the optimal solution. We
randomly generate 100 different applications. Each application
has no more than ten tasks. We obtain the optimal solutions
by exhaustively searching for all possible resource allocations
that meet the application’s deadline.

We calculate the standard deviation of the number of
computers needed by different algorithms from the optimal
solutions found by exhaustive search. As shown in Fig. 3(a),
the MSMD algorithm has the minimum standard deviation
from the optimal solution. This implies that the MSMD al-
gorithm can guarantee applications’ end-to-end deadlines with
the number of computers that is close to the optimal.



We also calculate the makespan standard deviation, since
heuristic algorithms may need more computers to guarantee
applications’ end-to-end deadlines than the optimal solution.
When extra computers are used for scheduling, it is possible
that the applications’ makespan are smaller than the makespan
produced by the optimal solution. Hence, the calculation of
makespan standard deviation only considers the cases when the
heuristic algorithms use the same number of computers as the
exhaustive search algorithm. As shown in Fig. 3(b), the MSMD
algorithm has the smallest standard deviation from the optimal
solution on both minimum number of computers needed and
applications’ makespan. It indicates that the performance of
the MSMD algorithm is close to optimal.

(a) Min Number of Computers (b) Makespan

Fig. 3: Standard Deviation Comparison

D. Comparison among Different Heuristic Algorithms

In the previous subsection, as we need to find the optimal
solutions through exhaustive search, both sample size and the
application size are limited. In this section, we extend the
test scale. In particular, we categorize applications into five
categories based on the application’s inverse parallel index and
deadline tightness, and randomly generate 800 test cases for
each category and apply the five different algorithms, i.e. CG,
HEFT, DBUG, ECS, and our MSMD, to these test cases. The
test results are depicted in Fig. 4 and summarized in Table II.

TABLE II: Overall Performance Comparison

Alg. MS Red. Rate Res Red. Rate
HEFT 6% 82.5%
DBUS 6% 82.7%

CG 8% 75.5%
ECS 8% 82.2%

MSMD 10% 83.4%

From Table II, it is not difficult to see that the makespan
reduction rate of the MSMD algorithm is 10% which is the
highest among all five algorithms. The MSMD also has the
highest resource reduction rate (83.4%). Although the HEFT,
DBUS and ECS algorithms have high resource reduction rates
(82.5%,82.7% and 82.2%, respectively) that are close to the
MSMD algorithm, their average makespan reduction rates are
only 6%, 6% and 8%, respectively. The Coffman-Graham (CG)
algorithm has a good makespan reduction rate, but it has a low
resource reduction rate. Figure 4 gives more details.

In particular, Fig. 4(a) depicts the comparison of the
resource reduction rate. The MSMD has the highest resource
reduction rates on all five different application categories.
When the applications have relaxed deadlines (RH or RL),
all five algorithms can schedule applications with much fewer
computers than the lower resource bound given by (14). As

(a) Resource Red. Rate (b) Makespan Red. Rate

(c) Makespan Red. Rate under Same No. of Comp.

Fig. 4: Comparisons

the deadlines become tight (TL or TH), all five algorithms
need more computers to schedule the applications. However,
the number of computers needed by all five algorithms are still
much fewer than the resource upper bound given by (14).

Fig. 4(b) shows the average makespan reduction rates
resulted from the different algorithms under different appli-
cation categories. Again, the MSMD algorithm always re-
sults in a higher makespan reduction rate compared with
other algorithms. When the applications’ deadlines are relax
(TD

TC
≥ 1.5), the MSMD algorithm is the most effective

algorithm for makespan reduction. On average, it reduces
application’s makespan by about 13% and 15% for RH and RL
types of applications, respectively. Even when the applications’
deadlines are tight (1 ≤ TD

TC
< 1.5), the MSMD is still the most

effective makespan reduction algorithm. On average, it has 3%
more makespan reduction than the other four algorithms.

However, as all five algorithms are heuristic scheduling
algorithms, it is possible that the five algorithms use different
number of computers to schedule the same application. Algo-
rithms that use more computers may schedule the application
with a smaller makespan than the algorithms that use less
computers. Hence, the overall makespan reduction rate given
in Fig 4(b) may not fully reflect algorithms’ performances on
makespan reduction. Fig 4(c) illustrates the detailed compari-
son of makespan reduction rates between MSMD and each of
the other four algorithms when they are using the same number
of computers to schedule the application. It clearly indicates
that on average MSMD can reduce application’s makespan by
3% more compared with the other four algorithms when using
the same number of computers.

In summary, the MSMD algorithm has the highest
makespan reduction rate with a minimum number of computers
needed compared with other algorithms. Under the same com-
puter resources, the MSMD algorithm can further reduce the
applications’ makespans by 3% of their end-to-end deadlines
compared with the other four algorithms, making it the most
efficient makespan reduction algorithm among the CG, HEFT,
DBUS, and ECS algorithms.

From the experiments, we have also observed that the
deadline tightness and the inverse parallel index are two major
factors that impact the number of computers needed. However,
exactly how these two factors impact the minimal resources



(a) TD = TC (b) TD = 1.5TC

Fig. 5: Impact of Deadline Tightness on the Number of
Resource Needed by MSMD

needed is not clear. In order to investigate the relationship
between the minimal resources needed, deadline tightness and
inverse parallel index, we perform another set of experiments.
In this experiment, we create a base application that contains
100 tasks. We further create a set of applications that have the
same number of tasks, the same sequential execution time,
but have different task graph shapes and different critical
paths. We schedule each application using MSMD algorithm
under two different end-to-end deadlines, i.e., TD = TC and
TD = 1.5TC , respectively.

Fig 5 depicts the experiment results. The X-axis represents
the inverse parallel index and Y-axis represents the number of
computers needed. From Fig 5, we observe that an application
needs almost |V | − Lev(τexit) computers to guarantee its
deadline only when almost all the tasks in the application
can be parallelly executed and the application’s end-to-end
deadline is very close to the critical path execution time. The
number of computers needed to guarantee an application’s end-
to-end deadline exponentially decreases when more tasks must
be executed sequentially. When more than half of the tasks
need to be sequentially executed, the number of computers
needed tends to be constant regardless the tightness of the
deadline.

VII. CONCLUSION

In this paper, we have addressed the issue of how to deploy
real-time application to computer clouds so that (1) real-time
application’s end-to-end deadline is guaranteed, (2) number
of resources allocated to the application is minimized, and
(3) under the allocated minimum resources, the application’s
makespan is minimized. We have proven the lower and upper
bounds on the number of resources needed to guarantee a given
real-application’s deadline. Based on the bounds, we have
developed a minimal slack time and minimal distance (MSMD)
heuristic task deployment and scheduling algorithm that finds
the minimum number of resources needed to guarantee an
application’s deadline and also minimizes the makespan of the
application under the allocated resources. The time complexity
for the MSMD is only O(|V |2m). Our experimental results
have shown that the heuristic MSMD algorithm can guarantee
applications’ end-to-end deadline with less resources compared
with other heuristic scheduling algorithms and can on average
reduce applications’ makespans by 10% of their deadlines
under the allocated resources.

However, in our current work, we have made two as-
sumptions: (1) computers in the cloud are homogeneous, and

(2) there are no communications among application tasks.
Our immediate future work is to study real-time application
resource needs when these two assumptions are removed.
Furthermore, it is not difficult to see from Fig. 5 that the
resource upper bound we have proven is not a tight bound.
Hence, another line of future work is to investigate whether
the upper bound can be theoretically tightened.
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