
Computation Efficiency Driven Job Removal
Policies for Meeting End-to-End Deadlines in

Distributed Real-Time Systems
Miao Song†, Shuhui Li†, Shangping Ren†

Department of Computer Science
Illinois Institute of Technology

Chicago, Illinois 60616
Email: {msong8, sli38, ren}@iit.edu

Shengyan Hong‡, Xiaobo Sharon Hu‡
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

Email: {shong3, shu}@nd.edu

Abstract—In distributed real-time systems, when resource
cannot meet workload demand, some jobs have to be removed
from further execution. The decision as to which job to remove
directly influences the system computation efficiency, i.e., the ratio
between computation contributed to successful completions of
real-time jobs and total computation contributed to the execution
of jobs that may or may not be completed. The paper presents
two job removal policies which aim at maximizing system’s
computation efficiency for distributed real-time applications
where the applications’ end-to-end deadlines must be guaranteed.
Experiments based on benchmark applications generated by
TGFF [1] are conducted and compared with recent work in
the literature. The results show clear benefits of the developed
approaches — they can achieve as much as 20% computation
efficiency improvement.

I. INTRODUCTION

In distributed real-time systems, such as vehicle control and
multimedia communication systems [2], [3], jobs are usually
required to be executed on a chain of processors and be
completed within given end-to-end deadlines. As jobs are
executed on distributed processors, local deadlines need to be
assigned to jobs when they arrive at each processor so that their
end-to-end deadlines can be met. When not all local deadline
constraints of jobs on a processor can be satisfied, some jobs
need to be removed from the processor’s execution queue so
that the remaining jobs can meet their end-to-end deadlines.

Different job removal criteria are proposed in the past.
In [4], [5], job removals are based on their the criticality
levels: the low critical jobs are removed to guarantee the
schedulability of all the high critical jobs. In [6], job removal
is aimed at minimizing the weighted number of jobs and
weighted completion time. Yang et al. [7] remove jobs by
considering temperature constraints. A recently proposed job
removal policy [8] aims to minimize the number of jobs to
be removed. In particular, it removes the job that has the
longest unfinished execution time. When a job with the largest

† The research is supported in part by NSF under grant number CAREER
0746643 and CNS 1018731.
‡ The research is supported in part by NSF under grant number CPS-

0931195 and a research contract from the Sandia National Laboratories.

future computation demand is removed from future execution,
the remaining jobs can share the maximum computation time
savings for their later stages and can hence have better chances
to meet their end-to-end deadlines. Therefore, the number of
jobs removed tends to be small.

Unfortunately, none of the job removal criteria has tak-
en into consideration of system computation efficiency, i.e.,
the ratio between computation contributed to successful job
completions and total computation carried out by the system.
It is not difficult to see that the ratio is directly related
to system’s energy consumption efficiency — performing
fruitless computation is a waste of energy.

In recent years, the increased amount of energy consumption
caused by computer systems is no longer negligible to nation’s
power plants. In 2006, approximately 61.4 billion KWh was
consumed by data centers alone in the United States and it was
around 1.2% of the total U.S. energy consumption. According
to [9], [10], this percentage doubles every five years. More
recent data shows that in 2010, 408 TWhs was consumed by
computers worldwide with 10% annual increase on installed
computers [11]. Hence, it is imperative that when we design
computer systems, we must take computation efficiency into
consideration, specially for real-time applications as they are
more often to have limited energy resources.

With priority based scheduling algorithms, such as the
EDF algorithm, job removal procedure works hand-in-hand
with the procedure that assigns local deadlines to distributed
applications. The removal decision is made based on local
information a processor has, such as the workload on the
processor. However, such information may not be known a
priori on processors where job arrivals are not known and
could be at arbitrary time. Therefore, we focus on online job
removal.

In this paper, we propose two computation efficiency driven
heuristic job removal policies for meeting end-to-end dead-
lines of distributed real-time applications. We compare and
analyze the advantages and disadvantages of the proposed
two approaches. Extensive simulations based on job models
generated by TGFF (“Task Graphs For Free”) [1] are con-

ducted to verify the benefits of the proposed policies over an
existing job removal policy. Our experimental results show
that the proposed computation efficiency driven job removal
policies not only result in high computation efficiency, but also
maintain reasonably low job removal ratio.

The rest of the paper is organized as follows. In Section II,
we formulate the research problem the paper is to address. It is
followed by background information regarding local deadline
assignment criteria for distributed real-time applications with
end-to-end deadlines (Section III). Two new computation effi-
ciency driven job removal policies, i.e., the Least Completion
ratio First (LCF) and the Maximum Potential computation
efficiency First (MPF) job removal policies, are presented in
Section IV. Experimental results are discussed in Section V.
Finally, we conclude the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we first introduce the models and definitions
and then formulate the research problem which the paper is
to address.

Processor Model
The distributed system in our context consists of p networked
processing units, denoted as P = {V1, V2, · · · , Vp}. The job
set on each individual processors is scheduled based on the
preemptive EDF scheduling algorithm. We further assume that
the energy cost per unit of computation is the same among all
the processors, and communication time and the related energy
cost are negligible.

Application Model
Real-time applications are modeled as a set of independent
jobs denoted as Γ = {J1, J2, · · · , Jn}. Each job has an end-
to-end deadline and may go through a chain of processors.
More precisely, a real-time job Ji is represented by a 3-tuple,
i.e., Ji = (Di, Ei, P

si
i [(Vx, Ji,j)]), where

• Di: end-to-end deadline;
• Ei: end-to-end execution time;
• P si

i [(Vx, Ji,j)]: job execution path, where Vx is the pro-
cessor on which job Ji’s jth stage, i.e., Ji,j , is executed;

• si: the length of job Ji’s execution path. We assume a
job does not repeat on a processor, i.e., si ≤ p;

• Ji,j : the jth sub-job of Ji, 1 ≤ j ≤ si.
Ji,j = (ri,j , ei,j , di,j);

• ri,j : release time of job Ji at its jth stage. We assume
sub-job Ji,j is released as soon as its predecessor sub-job
Ji,j−1 is finished;

• ei,j : execution time of job Ji at its jth stage,
si∑
j=1

ei,j =

Ei;
• di,j : local deadline assigned to Ji,j .

We use jth stage, or jth sub-job interchangeably in the paper.

Definitions
Definition 1: Average processor utilization (A): given a

set of processors P = {V1, · · · , Vp} and a job set Γ =

{J1, · · · , Jn}, where Ji = (Di, Ei, P
si
i [(Vx, Ji,j)]), the sys-

tem average processor utilization is defined as:

A =

∑n
i=1

Ei

Di

p
(1)

�
Definition 2: Stage indicator k(i, x): for Ji ∈ Γ and Vx ∈
P , if a sub-job of Ji is executed on processor Vx, function
k(i, x) returns a stage index j, where j = k(i, x) indicates that
job Ji’s jth stage, i.e., sub-job Ji,j , is executed on processor
Vx. �

Definition 3: Job removal ratio γ(t): within time duration
[0, t], if the number of jobs released is Nr, and the number of
jobs removed before they are successfully completed is Nd,
the job removal ratio is defined as: γ(t) = Nd/Nr. �

Definition 4: Current stage accrued execution time
Ccur(Ji,j , t): time duration that sub-job Ji,j is executed before
t at stage j and 0 ≤ Ccur(Ji,j , t) ≤ ei,j . �

Definition 5: Total accrued execution time Ctot(Ji,j , t):
time duration that job Ji is executed within time duration [0, t].

If at time t, job Ji is at its jth stage, Ctot(Ji,j , t) =
j−1∑
m=1

ei,m+

Ccur(Ji,j , t). �
Definition 6: Remaining execution time Crem(Ji,j , t): if at

time t, job Ji is at its jth stage, the remaining execution time
of Ji is Crem(Ji,j , t) = Ei − Ctot(Ji,j , t). �

Definition 7: Job execution completion ratio η(Ji,j , t) :
if job Ji is at its jth stage at time t, its execution completion
ratio is defined as: η(Ji,j , t) = Ctot(Ji,j , t)/Ei, where Ei is
the end-to-end execution time of Ji. �

Definition 8: Effective computation time Es(t): computa-
tion time contributed to successful completion of jobs before
their end-to-end deadlines within time duration [0, t]. Let Γsucc
denote the job set that are successfully completed before their
end-to-end deadlines within [0, t], then

Es(t) =
∑

Ji∈Γsucc

Ei (2)

where Γsucc ⊆ Γ. �
Definition 9: Wasted computation time Ef (t): computa-

tion time contributed to executing jobs that are removed before
their completion within time duration [0, t]. Let Γfail denote the
jobs that are removed before their completion and ti represents
the time point at which job Ji,j is removed,

Ef (t) =
∑

Ji∈Γfail∧0≤ti≤t

Ctot(Ji,j , ti) (3)

where Γfail ⊆ Γ. �
Definition 10: System potential computation efficiency

ρ(Ji,j , t): assume after job Ji,j ∈ Vx is removed from Vx at
time t, the remaining jobs then have the potential to complete
successfully, the computation ratio defined by (4) is called
potential computation efficiency.

ρ(Ji,j , t) =

∑
Jh∈Ω(Vx)∧h6=i

Eh

Ctot(Ji,k(i,x), t) +
∑

Jh∈Ω(Vx)∧h6=i

Eh
(4)

where Ω(Vx) is the sub-job set on Vx at time t. �
Definition 11: System computation efficiency µ(t): within

time duration [0, t], system computation efficiency is defined
as

µ(t) =
Es(t)

Ef (t) + Es(t)
= 1− Ef (t)

Ef (t) + Es(t)
(5)

�

Research problem
When the system resource cannot meet workload demand
and job removal is unavoidable, it is important to judiciously
decide which job to remove so that the system’s computation
efficiency is maximized. The problem is formulated as follows.

Problem 1: given a set of networked processors P and a set
of independent real-time jobs Γ as defined before, develop
an online job removal policy that maximizes the system
computation efficiency within time duration [0, t], i.e.

maxµ(t) (6)

�

III. BACKGROUND AND MOTIVATION

As online job removal policy heavily depends on processor’s
scheduling algorithm and local deadlines assigned to sub-jobs,
we first briefly summarize the schedulability conditions for
EDF based scheduling algorithm.

Given a job set Γ and a processor set P as defined before,
let Ω(Vx) denote the sub-job set to be scheduled on processor
Vx at a scheduling point, where Vx ∈ P , Ω(Vx) ⊆ Γ.
Assume a local deadline assignment algorithm assigns di,k(i,x)

as Ji,k(i,x)’s local deadline on processor Vx, where Ji,k(i,x) ∈
Ω(Vx). If Ω(Vx) is schedulable under EDF scheduling algo-
rithm, then we have: ∀Vx ∈ P ∧ ∀Ji,k(i,x), Jl,k(l,x) ∈ Ω(Vx)

ri,k(i,x) + ei,k(i,x) ≤ di,k(i,x) ≤ Di −
si∑

m=k(i,x)+1

ei,m (7)

di,k(i,x) − rl,k(l,x) ≤
∑

Jh,k(h,x) ∈ Ω(Vx),

rh,k(h,x) ≥ rl,k(l,x),

dh,k(h,x) ≤ di,k(i,x)

eh,k(h,x) (8)

Formula (7) bounds the local deadline of each sub-job on Vx
between its earliest completion time at current stage and the
latest start time of its immediate next stage. Formula (8) is the
schedulability constraint for jobs on Ω(Vx) to be schedulable
by EDF [12], [13].

When the two constraints cannot be both satisfied, some
jobs in Ω(Vx) need to be removed from further execution. We
take a recently developed local deadline assignment algorithm,
the OLDA algorithm [8], as an example to show how a
job removal policy works together with the EDF scheduling
algorithm based on local deadlines assigned by the OLDA
algorithm to meet end-to-end deadlines.

Example 1: Assume a system has three processors V1, V2, V3

and three jobs J1, J2, J3 whose execution information is given
below and also shown in Fig. 1:

J1 = {71, 64, P 3
1 [(V1, (0, 30, ?)), (V2, (?, 22, ?)), (V3, (?, 12, ?))]}

J2 = {77, 30, P 2
2 [(V1, (0, 7, ?)), (V2, (?, 23, ?))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, ?)), (V2, (?, 8, ?))]}

where the question marks (?) denote information to be decided
by the OLDA algorithm.

Fig. 1. Job Execution Paths

At t = 0, three jobs are all released to the first processor.
By applying the OLDA algorithm, we obtain local deadlines
for J1,k(1,1), J2,k(2,1) and J3,k(3,1) to be 30, 37 and 40,
respectively. Hence, at time t = 0, the job information we
have is:

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (?, 22, ?)), (V3, (?, 12, ?))]}

J2 = {77, 30, P 2
2 [(V1, (0, 7, 37)), (V2, (?, 23, ?))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (?, 8, ?))]}

Based on EDF scheduling policy, job J1,k(1,1) is executed
first. At t = 30, it finishes its execution on V1, and J1,k(1,2)

is released to V2, which triggers the OLDA to assign local
deadlines for jobs on V2. In other words, at t = 30, we have:

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (30, 22, 52)), (V3, (?, 12, ?))]}

J2 = {77, 30, P 2
2 [(V1, (0, 7, 37)), (V2, (?, 23, ?))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (?, 8, ?))]}

At t = 37, J2,k(2,1) finishes its execution on V1, and
J2,k(2,2) is released to V2. By this time, J1,k(1,2) has executed
7 time units on V2. The OLDA assigns the local deadline as
d2,k(2,2) = 75.

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (30, 22, 52)), (V3, (?, 12, ?))]}

J2 = {77, 30, P 2
2 [(V1, (0, 7, 37)), (V2, (37, 23, 75))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (?, 8, ?))]}

At t = 40, J3,k(3,1) finishes its execution on V1, and
J3,k(3,2) is released to V2, new local deadlines need to be
reassigned to the current sub-job set on V2. By this time,
J1,k(1,2) has executed 10 time units on V2 and J2,k(2,2) does

not have a chance to start on V2 yet. The OLDA assigns local
deadline as: d1,k(1,2) = 52, d2,k(2,2) = 83 and d3,k(3,2) = 60.

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (30, 22, 52)), (V3, (?, 12, ?))]}

J2 = {77, 30, P 2
2 [(V1, (0, 7, 37)), (V2, (37, 23, 83))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (40, 8, 60))]}

However, the end-to-end deadline of J2 is 77, which is
earlier than d2,k(2,2) = 83 — violating constraint (7). Hence,
Ω(V2) at t = 40 is not schedulable and some job(s) need to be
removed so that the remaining jobs can meet their end-to-end
deadlines.

If we remove the job with the maximum remaining execu-
tion time as it is done in [8], then as J1 has 12 + 12 = 24
remaining time units, larger than what J2 and J3 have (which
are 23 and 8, respectively), sub-job J1,k(1,2) is removed.
J2,k(2,2), J3,k(3,2) are assigned with new local deadlines as
below:

J2 = {77, 30, P 2
2 [(V1, (0, 7, 37)), (V2, (37, 23, 71))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (40, 8, 48))]}

Both J2 and J3 are able to complete before their deadlines and
J1 is removed after it is executed for 40 time units. Therefore,
within time duration of [0, 77], the system’s computation
efficiency is µ(77) = 1 − 40

40+30+11 = 51%, about 49% of
the computation performed is wasted.

However, at time t = 40, if we remove J2,k(2,2) instead of
J1,k(1,2) from executing on V2. We have

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (30, 22, 52)), (V3, (?, 12, ?))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (40, 8, 60))]}

At time t = 52, J1,k(1,2) finishes its execution, J1,k(1,3) is
thus released to V3. We have

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (30, 22, 52)), (V3, (52, 12, 64))]}

J3 = {72, 11, P 2
3 [(V1, (0, 3, 40)), (V2, (40, 8, 60))]}

J1,k(1,3) and J3,k(3,2) finish their execution at 64 and 60,
respectively. Only J2 is removed with 7 time units wasted.
Hence, within time duration of [0, 77], the system’s computa-
tion efficiency is µ(77) = 1− 7

64+7+11 = 91%.
At t = 40, the third choice is to remove J3,k(3,2). We have

J1 = {71, 64, P 3
1 [(V1, (0, 30, 30)), (V2, (30, 22, 52)), (V3, (52, 12, 64))]}

J2 = {77, 30, P 2
2 [(V1, (0, 7, 37)), (V2, (37, 23, 75))]}

Clearly, J1 and J2 now are able to finish their execution at
64 and 75, respectively.

In this case, the system computation efficiency within [0, 77]
is calculated as: 1 − 3

64+30+3 = 97%, which is much higher
compared with 51% and 91%. �

The system average processor utilization in Example1 is

A =
64
71 + 30

77 + 11
72

3
= 0.48

From this example, we can make the following two con-
clusions: 1) if an online EDF job scheduling is employed and

workload demand exceeds resources available, the online job
removal is unavoidable; 2) different job removal policies can
result in different system computation efficiency.

Another interesting observation is that in this example, the
system’s average processor utilization is only 48%, still job
removal is unavoidable on V2 in order to ensure the rest of
jobs meet their end-to-end deadline. In next section, we present
two computation efficiency driven job removal heuristics for
meeting end-to-end deadlines in distributed real-time systems.

IV. COMPUTATION EFFICIENCY DRIVEN JOB REMOVAL
POLICIES

Job removal and local deadline assignment procedures both
need workload information on individual processors (Vx).
Every time a new job arrives at processor Vx, the workload
changes on Vx and so is the job execution priorities. Hence,
new local deadlines are assigned to the job set including
both the newly arrived jobs and jobs that are already in the
queue for execution. The newly assigned local deadlines must
satisfy the constraints given by (7) and (8). If no feasible
local deadline assignment can be found, some jobs have to be
removed from future execution so that the remaining jobs can
meet their end-to-end deadlines. Our goal is to maximize the
system computation efficiency for a given execution duration,
i.e., maximize the ratio between computation contributed to
jobs that are successfully completed before their end-to-end
deadlines and the total computation the system has performed.

For a given period of time, the number of jobs released is
fixed, hence, intuitively, the less the removed jobs, the higher
the system computation efficiency. Unfortunately, due to the
dynamic and distributed nature of the system, we are not able
to predict how the current job removal decision may impact
the number of future successful jobs and what these successful
jobs are. We can only use local information to make heuristic
decisions.

At a given time instance t, the information we have about a
job released to processor Vx are: (1) job execution completion
ratio η(Ji,j , t), and (2) system potential computation efficiency
if job J(i, j) is removed, i.e., ρ(Ji,j , t), where J(i, j) ∈ Ω(Vx)
and j = k(i, x).

In this section, we introduce two computation efficiency
driven job removal policies: i.e., the Least Completion ratio
First (LCF) and the Maximum Potential computation efficien-
cy First (MPF) job removal policies.

A. The LCF Job Removal Policy

Before we present the job execution completion ratio based
removal policy, we use an example to provide the intuition
behind the policy.

Consider the Example 1 given in the previous section.
At time 40, as the job set on V2, i.e., J1,k(1,2), J2,k(2,2)

and J3,k(3,2), does not satisfy schedulability constraints, one
of the jobs has to be removed. Job J1 has completed 40
time unit and has 24 time units of work left; job J2 has
completed 7 time units, with 23 time units of work left;
while job J3 has just arrived at V2, and completed 3 time

units with 8 time units remaining for execution. Therefore,
at time t = 40, the job execution completion ratios are
η(J1,k(1,2), 40) = 40

40+24 = 63%, η(J2,k(2,2), 40) = 7
7+23 =

23%, and η(J3,k(3,2), 40) = 3
3+8 = 27%. Based on the least

job execution completion ratio first principle, job J2 is to be
removed, which is different from the job removal policy based
on the unfinished execution time. Accordingly, all the jobs
except J2 can successfully complete their execution, and total
7 + 64 + 11 time units of computation is performed by the
system when t = 77. The system computation efficiency is
thus µ(77) = 75

82 = 91%, which is higher than 51% attained
by the maximum remaining execution time based policy.

There are situations where multiple jobs may share the same
completion ratio. In this case, we use unfinished execution
time to break the ties, i.e., we remove the job with the
maximum remaining execution time to lessen the burden of
the downstream processors. The details of the LCF policy is
given in Algorithm 1. Assume the time point when the removal
decision needs to be made is t and the job set that violates
schedulability constraints is Ω(Vx), r is the job index chosen
for removal.

Algorithm 1: LCF(Ω(Vx),t)

1 Least Compl Ratio = 1
2 r = 0
3 foreach Ji,k(i,x) ∈ Ω(Vx) do
4 if η(Ji,k(i,x), t) < Least Compl Ratio then
5 Least Compl Ratio = η(Ji,k(i,x), t)
6 r = i
7 end
8 if η(Ji,k(i,x), t) = Least Compl Ratio &&

Crem(Jr,k(r,x), t) < Crem(Ji,k(i,x), t) then
9 r = i

10 end
11 end
12 Return r

In Algorithm 1, we compute each job’s completion ratio in
the job set and obtain the job(s) with the least job execution
completion ratio among the set (line 4 to line 7). If there are
multiple jobs sharing the same job execution completion ratio,
we choose the one with the maximum remaining execution
time (line 8 to line 10). Finally, we return the index of the
chosen job (line 11). The time complexity of the algorithm is
O(n), where n = |Ω(Vx)|.

The job execution completion ratio based removal policy
focuses on the computation efficiency of individual jobs.
Another aspect to consider for minimizing the computation
efficiency is to focus on the potential computation efficiency
on the local processor that can be brought by removing a job.

B. The MPF Job Removal Policy

Again consider Example 1 given in Section III. At time t =
40, as the job set on V2, i.e., J1,k(1,2), J2,k(2,2) and J3,k(3,2), is
not schedulable, one of them needs to be removed. If J1,k(1,2)

is removed, we are assuming J2,k(2,2) and J3,k(3,2) are able
to complete successfully, then ρ(J1,k(1,2), 40) = 30+11

40+30+11 .

If J2,k(2,2) is removed instead, then J1,k(1,2) and J3,k(3,2)

are assumed to complete successfully, ρ(J2,k(2,2), 40) =
64+11

7+64+11 . Similarly, ρ(J3,k(3,2), 40) = 64+30
3+64+30 . We thus

remove J3,k(3,2) for the higher potential system computation
efficiency. As we discussed in the previous section, the system
computation efficiency following this policy is 97% at t = 77.

Algorithm 2 describes the MPF job removal policy. It is
similar to Algorithm 1 except that rather than finding the jobs
with the least completion ratio, it finds the job with maximum
potential computation efficiency. The time complexity of this
algorithm is the same as Algorithm 1.

Algorithm 2: MPF(Ω(Vx),t)

1 Max Potential Effi = 0
2 r = 0
3 foreach Ji,k(i,x) ∈ Ω(Vx) do
4 if ρ(Ji,k(i,x), t) > Max Potential Effi then
5 Max Potential Effi = ρ(Ji,k(i,x), t)
6 r = i
7 end
8 if ρ(Ji,k(i,x), t) = Max Potential Effi &&

Crem(Jr,k(r,x), t) < Crem(Ji,k(i,x), t) then
9 r = i

10 end
11 end
12 Return r

C. Comparison of the Two Policies

Assume Ω(Vx) (Vx ∈ P) is a job set that is not schedulable
and Jr,k(r,x) is the job chosen for removal at time point tr, 0 ≤
tr ≤ t. Our goal is to maximize Es(t)

Ef (t)+Es(t) , i.e., minimize
Ef (t)

Ef (t)+Es(t) .

min
Ef (t)

Ef (t) + Es(t)
=

min

∑
Jr∈Γfail∧0≤tr≤t

Ctot(Jr,k(r,x), tr)∑
Jr∈Γfail∧0≤tr≤t

Ctot(Jr,k(r,x), tr) +
∑

Ji∈Γsucc

Ei
(9)

The MPF policy makes job removal decisions based on
system’s potential computation efficiency and assumes that by
removing one job from its further execution, all remaining jobs
will complete successfully. In other words, the job selection
for removal is based on (10):

min
Ji,k(i,x)∈Ω(Vx)

Ctot(Ji,k(i,x), t)

Ctot(Ji,k(i,x), t) +
∑

Jh,k(h,x)∈Ω(Vx)∧h6=i
Eh

(10)

When system’s average processor utilization is low, it is
more likely that removing one job is sufficient for the remain-
ing jobs to complete successfully, and hence results in small
failure job set Γfail. When |Γfail| is small, comparing formu-
la (9) to (10), it is highly possible that Ctot(Ji,k(i,x), t) and

∑
Jr∈Γfail

Ctot(Jr,k(r,x), t) are close to each other. If |Γfail| = 1,

formula (9) and formula (10) have the same result. Therefore,
when the average processor utilization is low, the MPF policy
performs well in achieving the goal of maximizing system
computation efficiency.

When the system average utilization is high, more jobs
may miss their end-to-end deadlines, which indicates more
computation may be wasted. In other words, for formula (9),
Ef (t) becomes the dominant component. In this case, keeping
the waste ratio low is the key to reach the goal of high
computation efficiency. The LCF policy removes the job with
least job execution completion ratio, i.e.,

min
Ji,k(i,x)∈Ω(Vx)

{
Ctot(Ji,k(i,x), t)

Ei

}
It hence performs better when system average utilization

is high. Next section we empirically evaluate the proposed
policies.

V. PERFORMANCE EVALUATION

In this section, we empirically evaluate the proposed compu-
tation efficiency driven job removal policies and compare them
with an existing job removal policy based on job remaining
execution times, i.e., the RET policy [8].

When job removal becomes necessary on a processor, the
RET policy removes the job that has the maximum remaining
execution time. As we do not know the future workload on
downstream processors, removing the job with the maximum
remaining execution time lessens the burden of downstream
processors. Hence, the remaining jobs will have better chances
to finish before their end-to-end deadlines. Furthermore, by
removing the job that requires the longest future execution
time, it is more likely to reduce the total number of removed
job. From this point of view, the RET policy could indirectly
lead to good system computation efficiency.

Our evaluation and comparison focus on two aspects, i.e.,
system computation efficiency and job removal ratio. For both
of the evaluation metrics, we have to consider when the
workload is balanced or unbalanced among all processors. The
following gives the detail about our experiment settings, job
set generations, and result analysis.

A. Simulator Implementation

The experiments are conducted on a simulator which we
have developed. In the simulator, we use the OLDA algorith-
m [8] to assign job local deadlines. In the process of assigning
local deadlines, if the constraints defined by (7) and (8) cannot
be met by the job segments on a processor, a job removal
algorithm is called to remove selected jobs from their further
execution.

B. Job Set Model Generation

We use TGFF to randomly generate job models with ex-
ecution path information. The nodes in TGFF graph have
precedence constraints, which corresponds to the execution

order of sub-jobs in our job model. Based on a series-parallel
structure of the TGFF graph, we do the following mapping:
• A chain in a TGFF graph corresponds to an execution

path of a job.
• A node in a TGFF graph corresponds to a job segment.
• An edge in a TGFF graph corresponds to a precedence

constraint of the execution order between two sub-jobs.
• The number of chains corresponds to the number of jobs

in the system.
• The height of a TGFF graph corresponds to the number

of processors in the system.

Fig. 2. Job Model Generation

Fig. 2(a) shows a task graph generated by TGFF. Based on
the height from the root node (node 0), the graph has four
(4) layers. Hence, we assume there are four processors. The
job segments that are on the same layer are assigned to the
same processor as shown in Fig. 2(b). More specifically, for
the generated task graph shown in Fig. 2(a), we have the job
model given below which is also graphically represented by
Fig. 2(b):

J1 = {?, ?, P 3
1 ((V1, (0, ?, ?)), (V2, (?, ?, ?)), (V4, (?, ?, ?)))}

J2 = {?, ?, P 1
2 ((V4, (0, ?, ?)))}

J3 = {?, ?, P 2
3 ((V1, (0, ?, ?)), (V2, (?, ?, ?)))}

J4 = {?, ?, P 4
4 ((V1, (0, ?, ?)), (V2, (?, ?, ?)), (V3, (?, ?, ?)), (V4, (?, ?, ?)))}

It is worth point out that when we map a TGFF graph into
a job model graph, we intentionally balance the numbers of
sub-jobs going across different processors, i.e., the differences
between the number of sub-jobs on each processor is less than
2. With the balanced number of sub-jobs on each processor,
we can control the workload generation on processors which
we will discuss in the following subsection.

Once the structure of the job model is generated, the next
step is to generate timing information for each job, i.e., end-to-
end execution time, end-to-end deadline, and execution time
of each job segments, i.e., workload on each processors.

C. Workload Generation

As a job may go through a sequence of processors, hence
the end-to-end execution time of a job is distributed among
different sub-jobs. For a given end-to-end execution time of a
job, how it is distributed along its execution path reflects the

workload balance among different processors as in the task set
model we generate, the number of sub-jobs on each processor
are on purposely made roughly the same (Section V-B). We
characterize two different workload scenarios: 1) balanced
workload, i.e., the execution time of different job segments has
a high probability to be the same; and 2) unbalanced workload,
i.e., the execution time of different job segments has a high
probability to be different. We use the methods presented
in [14] to generate the two different types of workloads.

D. Experiment Setting

Jobs and their execution paths are randomly generated by
TGFF. The number of jobs in a job set ranges from 15 to 30
and the number of processors in the system ranges from 5 to
10. For each job set model generated by the TGFF, we use the
Uunifast method [14] to generate a set of job instances. For
the generated set of job instances, we obtain system execution
efficiency and job removal ratio based on the three different
job removal policies, i.e., LCF, MPF, and RET policies. The
experiment is repeated on 10 different job models, i.e., 10
different TGFF graphs, with 50 different sets of job instances.
We take the average value of the 10 × 50 = 500 tests. The
experiment results are plotted based on average processor
utilization in the system (A) which is defined in Definition 1.

E. Results Discussion

Under the experiment settings given above, the system com-
putation efficiency under balanced workload and unbalanced
workload are depicted in Fig. 3(a) and Fig. 3(b), respectively.

40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Average Processor Utilization (%)

A
v
e

ra
g

e
 C

o
m

p
u

ta
ti
o

n
 E

ff
ic

ie
n

c
y
 (

%
)

RET

LCF

MPF

(a) Balanced Workload

40 45 50 55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

Average Processor Utilization (%)

A
v
e

ra
g

e
 C

o
m

p
u

ta
ti
o

n
 E

ff
ic

ie
n

c
y
 (

%
)

RET

LCF

MPF

(b) Unbalanced Workload

Fig. 3. System Computation Efficiency

From Fig. 3, we have the following observations:
• System computation efficiency decreases as the average

processor utilization increases. Furthermore, efficiency
drops quickly when the average utilization is above
60% and 50% for balanced workload and unbalanced
workload, respectively.

• System has higher computation efficiency under unbal-
ance workload than under balanced workload. This phe-
nomenon becomes more obvious when the average pro-
cessor utilization is high. The reason is that unbalanced
workload may result in early job removals especially
when average processor utilization is high. When a job
is removed at its early stage, less computation is wasted

on the job and hence can result in higher computation
efficiency.

• Under both balanced and unbalanced workloads, both
LCF and MPF achieve higher computation efficiency than
the RET policy. Furthermore, when the average processor
utilization is low, MPF performs better than LCF. The
position changes when the average processor utilization
becomes high (above 75%). This observation is consistent
with our previous analysis. However, the difference is not
significant.

• The superiority of both LCF and MPF over RET with
respect to system computation efficiency is more sig-
nificant under unbalanced workload than under balanced
workload. The difference can be as large as 20% between
the LCF (MPF) and RET under unbalanced workload.

40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

Average Processor Utilization (%)

A
v
e

ra
g

e
 J

o
b

 R
e

m
o

v
a

l
R

a
ti
o

 (
%

)

RET

LCF

MPF

(a) Balanced Workload

40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

Average Processor Utilization (%)

A
v
e

ra
g

e
 J

o
b

 R
e

m
o

v
a

l
R

a
ti
o

 (
%

)

RET

LCF

MPF

(b) Unbalanced Workload

Fig. 4. Job Removal Ratio

Fig. 4 depicts the average job removal ratio. Similar obser-
vations can be made as following:
• As average processor utilization increases, job removal

ratio increases for all three approaches.
• Under balanced workload, when the average processor

utilization is above 60%, the job removal ratio increase
quickly. For unbalanced workload, the increasing of the
job removal ratio is relatively smooth compared to its
balanced counter part.

• Both LCF and MPF job removal policies result in higher
job removal ratio than the RET policy. The difference
on average is smaller under unbalanced workload (0.9%
and 1.8% for LCF and MPF, respectively) than under
balanced workload (1.2% and 3% for LCF and MPF,
respectively).

• The LCF policy has less job removal ratio than MPF
policy under both balanced and unbalanced workloads.

Both LCF and MPF focus on maximizing the system
computation efficiency while the RET focus on minimizing
job removal ratio, hence, as can be seen from Fig. 3, the
computation efficiency differences between LCF and MPF
is small compared with the differences between LCF (MPF)
and RET, but both LCF and MPF have better computation
efficiency than the RET policy does. However, from Fig. 4,
RET outperforms LCF and MPF in terms of average job

removal ratio. In other words, both LCF and MPF obtain
better system computation efficiency at the cost of increased
average job removal ratio. On the other hand, RET has low
average job removal ratio but at the cost of decreased system
computation efficiency. Fig. 5 shows the trade-offs between
computation efficiency and job removal ratio which is obtained
by integrating Fig. 3 and Fig. 4 as following:

For each average processor utilization, we obtain from Fig. 3
and Fig. 4 the computation efficiencies, i.e., eL, eM , and eR,
and job removal ratios, i.e., rL, rM , and rR, for the LCF,
MPF, RET, respectively. We calculate both the computation
efficiency and job removal ratio percentage increases of LCF
and MPF over RET. The value pairs (rL−rRrR

, eL−eReR
) (and

(rM−rRrR
, eM−eReR

)) are plotted on Fig. 5.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Job Removal Ratio Increase Over RET (%)

C
o

m
p

u
ta

ti
o

n
 E

ff
ic

ie
n

c
y

 I
n

c
re

a
s
e

s
 o

v
e

r
R

E
T

 (
%

) LCF

MPF
45 Degree

(a) Balanced Workload

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Job Removal Ratio Increase Over RET (%)

C
o

m
p

u
ta

ti
o

n
 E

ff
ic

ie
n

c
y

 I
n

c
re

a
s
e

s
 o

v
e

r
R

E
T

 (
%

)

LCF

MPF

45 Degree

(b) Unbalanced Workload

Fig. 5. Tradeoff Between LCF (MPF) and RET

In Fig. 5, a data point residing above the 45 degree line
represents the benefit in terms of increased computation effi-
ciency of LCF (MPF) over RET; while a data point residing
below the 45 degree line represents the increased job removal
ratio.

From Fig. 5, we have the following observations:
• Under balanced workload, LCF outweighs RET as most

of the data points are above the 45 degree line. On
the other hand, the computation efficiency improvement
brought by MPF is at a high cost of job removal ratio.

• Under unbalanced workload, both LCF and MPF out-
weigh RET when both computation efficiency and job
removal ratio are taken into consideration.

• MPF performs better under unbalanced workload than
under balanced workload.

From these experiments, we can conclude that LCF per-
forms the best when the system average processor utilization is
high, and MPF has advantage over LCF when the average pro-
cessor utilization is relative low. Both the proposed approaches
outperforms the RET approach even when job removal ratio
is taken into consideration.

VI. CONCLUSION

As the amount of energy consumed by computer systems
increases dramatically each year, how to most efficiently
utilize the computer resources and increase their computation

efficiency has become an important and practical issue. In
this paper, we present two computation efficiency driven job
removal policies, i.e., LCF and MPF policies, for meeting end-
to-end deadlines in distributed real-time systems. To our best
knowledge, we are the first to consider system computation
efficiency for online job scheduling. The performances with
respect to system computation efficiency and job removal ratio
of the two polices are fully investigated under different job
model, different average processor utilization, and balanced
and unbalanced workload distributions. The experiment results
clearly show the advantages of the proposed policies. However,
in this work, we assume that each processor consumes the
same amount of energy for a unit of work, hence computation
efficiency can be directly mapped to energy consumption
efficiency. Our immediate future work is to study the online
job removal policy when processors in a distributed system
have different energy consumption rates.

REFERENCES

[1] R. Dick, D. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of the 6th international workshop on Hardware/software
codesign. IEEE Computer Society, 1998, pp. 97–101.

[2] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in Proceedings of the 44th annual
Design Automation Conference. ACM, 2007, pp. 278–283.

[3] S. Matic and T. Henzinger, “Trading end-to-end latency for compos-
ability,” in Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE
International. IEEE, 2005, pp. 12–pp.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in Real-
Time Systems (ECRTS), 2012 24th Euromicro Conference on. IEEE,
2012, pp. 145–154.

[5] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE. IEEE, 2010, pp.
13–22.

[6] J. Peha, “Heterogeneous-criteria scheduling: minimizing weighted num-
ber of tardy jobs and weighted completion time,” Computers & opera-
tions research, vol. 22, no. 10, pp. 1089–1100, 1995.

[7] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, “Dynamic thermal
management through task scheduling,” in Performance Analysis of Sys-
tems and software, 2008. ISPASS 2008. IEEE International Symposium
on. IEEE, 2008, pp. 191–201.

[8] S. Hong, T. Chantem, and X. Hu, “Meeting end-to-end deadlines
through distributed local deadline assignments,” in Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd. IEEE, 2011, pp. 183–192.

[9] J. Koomey, “Estimating total power consumption by servers in the us
and the world,” 2007.

[10] M. Webb et al., “Smart 2020: Enabling the low carbon economy in the
information age,” The Climate Group. London, vol. 1, no. 1, pp. 1–1,
2008.

[11] N. Hardavellas, “Exploiting dark silicon for energy efficiency,” NSF
Workshop on Energy-Efficient Data Management, 2011.

[12] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Systems, vol. 2,
no. 3, pp. 181–194, 1990.

[13] H. Chetto and M. Chetto, “Scheduling periodic and sporadic tasks in
a real-time system,” Information Processing Letters, vol. 30, no. 4, pp.
177–184, 1989.

[14] E. Bini and G. Buttazzo, “Biasing effects in schedulability measures,”
in Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro
Conference on. IEEE, 2004, pp. 196–203.

