
Delay-Impact-Based Local Deadline Assignment for
Online Scheduling of Distributed Soft Real-Time

Applications

Miao Song†, Shuhui Li†, Shangping Ren†
Illinois Institute of Technology

Email: {msong8, sli38, ren}@iit.edu

Gang Quan‡
Florida International University

Email: {gang.quan}@fiu.edu

Abstract—Distributed soft real-time applications often involve
multiple jobs that are executed on different processing units.
Hence, resource competitions among these applications can be on
any processing unit in the system. However, due to distributed
nature of these applications, each processing unit may not have
the knowledge about the workload on other processing units.
Therefore, scheduling decisions made by individual processing
units about their local job execution orders may not be optimal
for the applications to which the jobs belong with respect to
meeting the applications’ end-to-end deadlines. In this paper, we
first introduce a metric to measure, at a local processing unit, the
risk of a distributed soft real-time application missing its end-
to-end deadline. Second, based on the metric, we develop a local
deadline assignment algorithm, i.e., the delay-impact-based (DIB)
local deadline assignment algorithm. With the DIB algorithm,
distributed processing units can independently schedule their
local job sets based on the assigned job deadlines with maximized
successful ratio of meeting distributed real-time applications’
end-to-end deadlines. We empirically compare the DIB algorithm
with three commonly used local deadline assignment algorithms,
i.e., the OLDA, Pure, and Norm algorithms. The experimental
results show that the DIB algorithm has clear advantage over the
OLDA, Pure, and Norm approaches — it results in up to 50%,
35%, and 35% higher successful ratio than the OLDA, Pure, and
Norm approaches with respect to meeting application’s end-to-
end deadlines, respectively. Furthermore, for those applications
that do miss their end-to-end deadlines, the application execution
delay ratio resulted by the DIB algorithm is also up to 300%,
50%, and 150% smaller comparing to the other three approaches.

I. INTRODUCTION

Many distributed soft real-time applications, such as interac-

tive online video gaming [1] and teleconferencing [2], involve

multiple jobs executed on different processing units with speci-

fied end-to-end deadline requirements. These applications may

be deployed to a system at any time and on any processing unit

during run-time. For instance, a new computation intensive

application may be deployed on the sparc workstation while an

online gaming is in process. As a result, resource competitions

among these applications can be on any processing unit and

unpredictable. Furthermore, due to the distributed nature of

the system, often times an individual processing unit does not

† The research is supported in part by NSF under grant number CAREER
0746643, CNS 1018731 and CNS 1035894.

‡ The research is supported in part by NSF under grant number CNS
1423137 and CNS 1018108.

have detailed information about the working status of other

processing units. Hence, the schedule of applications on a

processing unit has to be made at run-time and based on local

information.

However, the resulting online schedule on a local processing

unit is not necessarily optimal to ensure that all applications

finish executions before their end-to-end deadlines. Even

though the job assignment to particular processing units is

known a priori, to determine the local scheduling order of

applications in order to meet their end-to-end deadlines is still

a NP-complete problem [3].

On each processing unit, the EDF scheduling algorithm is

usually used to fully exploit processing resource, since EDF

scheduling algorithm is an optimal scheduling algorithm for a

single processing unit [4]. Accordingly, a local deadline should

be assigned to a job when its application is dispatched to a

processing unit. The jobs (their applications) are scheduled

based on their local deadlines. We assume that all applications

(their related jobs) continue their execution even if they pass

their local deadlines or end-to-end deadlines for the following

reasons: 1) missing a local deadline does not necessarily

indicate the application will miss its end-to-end deadline, as

the application may still have a chance to catch up during

its future execution; 2) for soft real-time applications, an

application missing its end-to-end deadline may still have its

benefits [1].

In this paper, we introduce a metric to measure, at a local

processing unit, the end-to-end deadline missing risk of each

distributed soft real-time application. Based on the metric, we

then develop a local deadline assignment algorithm, i.e., delay-
impact-based (DIB) local deadline assignment algorithm to

minimize the risk. With the job deadlines assigned by the

DIB algorithm, distributed processing units can independently

schedule their local job sets by the EDF scheduling algorithm

to maximize successful ratio of meeting distributed real-time

applications end-to-end deadlines.

We compare and analyze the proposed approach with three

commonly used local deadline assignment approaches, i.e., the

OLDA [2], Pure [5], and Norm [6], in terms of application

successful ratio and application execution delay ratio (the

degree of an application’s end-to-end delay with respect to its

deadline). Our experimental results show that our approach

978-1-4799-7575-4/14/$31.00 ©2014 IEEE

presents significant advantages over the counterparts — it

results in up to 50%, 35%, and 35% higher successful ratio

than the OLDA, Pure, and Norm approaches with respect

to meeting application’s end-to-end deadlines, respectively.

Furthermore, for those applications that do miss their end-to-

end deadlines, the application execution delay ratio resulted

by the DIB algorithm is also up to 300%, 50%, and 150%
smaller comparing to the other three approaches.

The rest of the paper is organized as follows. We discuss

related work in Section II. In Section III, we formulate the

research problem the paper addresses. Our local deadline as-

signment algorithm is introduced in Section IV. Experimental

results are discussed in Section V. Finally, we conclude the

paper in Section VI.

II. RELATED WORK

For distributed real-time applications, how to guarantee the

applications’ end-to-end deadlines has been a research chal-

lenge and significant amount of efforts have been made in the

research community. For instance, Bettati et.al. [7] developed

a priority assignment approach that guarantees schedulability

for the flow shop task model where each task’s total execution

length and execution time on the shared processing unit are

identical. Abdelzaher et al. [8], [9] proposed a worst case

bound for task graphs with/without cycles under the pipeline

scheduling model. Based on the bound, they transformed the

end-to-end scheduling problem into a uni-processor scheduling

problem. Lee et al. [10] took the approach of allowing global

viewpoint to be incorporated and developed a convex unified

framework to guarantee end-to-end delay. These approaches

either make special assumptions about the application models

or assume that the global view is available to local processors

in order to perform offline schedulability analysis.

Without end-to-end deadlines strictly guaranteed and strong

coupling among scheduling decisions taken on each processing

unit, another direction is to divide the end-to-end deadlines

into local deadlines for each application’s jobs on their execu-

tion processors and apply uni-processor scheduling algorithms

to schedule local jobs. Kao et.al [5] proposed Equal Slack
(Pure) and Equal Flexibility (Norm) local deadline assignment

approaches for meeting end-to-end deadlines. Later research

works exploited these two approaches and apply them into

parallel task models. For instance, Natale et al. [3] gave a

static slicing technique using a critical path that maximizes the

minimum laxity. An adaptive deadline assignment technique

that reflects the characteristics of task graph parallelism was

presented in [6]. Although these approaches are straightfor-

ward and easy to implement, they share the same shortcoming:

resource contention among jobs (applications) on different

processing units is not taken into consideration when local

deadlines are assigned.

In order to overcome the resource contention problem of

distributed real-time applications, Hong et al. [2] recently pro-

posed a laxity time based local deadline assignment approach.

The objective of this approach is to maximize the minimal

available laxity time of all jobs on each processing unit.

However, considering only laxity time does not fully capture

the nature of the risk of missing the end-to-end deadline due to

the delay caused by resource contention. The performance of

the approach can deteriorate sharply when all applications have

to be finished even if they miss their end-to-end deadlines. In

this paper, rather than using available slack time to decide an

application’s execution schedule, we study the impact of an

application being delayed toward its end-to-end deadline and

use the delay impact to decide job execution orders.

III. PROBLEM FORMULATION

In this section, we first introduce models and definitions,

and then formulate the research problem.

A. Models and Notations

System Model
The system consists of m autonomous processing units de-

noted as V = {V1, V2, · · · , Vm}. By autonomous, we mean each

unit is independent, has its own job scheduler, and it does

not have information about the operation status of other units.

The system also contains a set of distributed soft real-time

applications A = {A1, A2, · · · , An} deployed on V.

Application Model1
Each application has a set of precedence-related jobs which

go through a chain of processing units. More precisely, a

real-time application Ai is represented by a quadruple, i.e.,

Ai ≡ (Ri, Di,Γi, fi), where

• Ri: application Ai’s release time, we omit it if Ai is

released at time 0.

• Di: absolute end-to-end deadline;

• Γi: ordered execution sequence of jobs belonging to Ai.

Γi ≡ (Ji,1, Ji,2, · · · , Ji,li), where li is total number of

jobs that application Ai has;

• Ji,k: the kth job in the ordered sequence of Ai. It is

defined by Ji,k ≡ (ri,k, ei,k, di,k), ∀k ∈ {1, 2, · · · , li},

– ri,k: release time of Ji,k. Other than the first job’s

release time, i.e., ri,1 = Ri, all other jobs’ release

time ri,k(∀k, k �= 1) is decided at run-time;

– ei,k: execution time of Ji,k;

– di,k: deadline of Ji,k, di,k ≤ Di. It does not have to

be smaller than Di and is also decided at run-time;

• fi: a mapping between Γi and V . fi(Ji,k) = Vp, Vp ∈ V ,

job Ji,k is executed on Vp.

Notations and Definitions

Ω(Vp, t): job set on processing unit Vp at time t.
Exe(Ji,k, t): job Ji,k’s total accrued execution time since its

release (ri,k) to the current time t, 0 ≤ Exe(Ji,k, t) ≤ ei,k.

Dly(Ji,k, t): to-be-delayed time of job Ji,k at time t. 0 <

Dly(Ji,k, t) ≤ B, where B =
∑

Jl,m∈{Ω(Vp,t)−{Ji,k}}
(el,m −

Exe(Jl,m, t)). B implies the worst case to-be-delayed time

of Ji,k: Ji,k will be the last one executed among Ω(Vp, t).

1we do not have any constraints on the execution path of distributed soft
real-time applications nor the execution time of their jobs on each deployed
processing unit.

Exeapp(Ai, t): application Ai’s total accrued execution time

since its release (Ri) to the current time t. Exeapp(Ai, t) =
li∑

k=1

Exe(Ji,k, t) =
b−1∑
k=1

ei,k + Exe(Ji,b, t), assuming Ji,b is

currently being executed or waiting for being completed

at time t and Ji,k (1 ≤ k ≤ b− 1) has completed before or

at time t.
L(Ai, t): application Ai’s laxity time at time t,

L(Ai, t) = Di − (

li∑
k=1

ei,k − Exeapp(Ai, t))− t (1)

It indicates how much time Ai can be delayed without

missing its end-to-end deadline at current time t.
η(Ai): application Ai’s execution delay ratio. Assume Ai

finishes its execution at time Fi,

η(Ai) =

{ Fi−Di
Di

if Fi > Di

0 if Fi ≤ Di

AS: successful application set, i.e., the set of applications

that finish their executions no later than the end-to-end

deadlines, AS ⊆ A.

γ: application successful ratio, γ = |AS |
|A| .

B. Preliminary
When distributed applications share processing units during

their end-to-end executions, their jobs are not always immedi-

ately executed once released to a processing unit: some jobs

need to wait for other jobs to finish. The finish time of a job

(its corresponding application) on a processing unit depends on

its execution order among the to-be-scheduled job set. If each

job of an application is always the first one to execute on its

deployed processing unit, then no laxity time is consumed and

the application will not miss its end-to-end deadline. However,

if a job is lastly executed, then it will need more than its

own execution time to finish. Therefore, the related application

has a higher risk of missing its end-to-end deadline in future

execution. We call the risk of missing an application’s end-

to-end deadline due to waiting for other applications to finish

“the delay impact”.

How to measure the delay impact of each application and

the scheduling decisions can reflect and minimize this impact

when its related jobs are scheduled on local processing units is

a challenge. A direct way [8] is to quantify the “delay impact”

of an application as its available laxity time after being delayed

on the shared processing unit. The smaller available laxity time

an application has, the higher risk the application misses its

end-to-end deadline. The application with the largest available

laxity time among a scheduled application set is executed last

to minimize the risk of the whole set. We use the Example 1
to demonstrate how it works:

Example 1: Assume that there are three processing units in

the system {V1, V2, V3} and three applications A1, A2 and A3

as denoted in Fig 1.
Assume all three applications have arrival time of 02 and

2This paper does not assume that all applications release at time 0 or at
the same time point. The special release assumption in this example serves
for the convenience of explanation.

Fig. 1. Application Execution Paths

thus their release time are omitted in the following formula.

A1 = (77, ((0, 24, ?), (?, 27, ?), (?, 15, ?)),

{f1(J1,1) = V1, f1(J1,2) = V2, f1(J1,3) = V3})
A2 = (78, ((0, 9, ?), (?, 23, ?), (?, 9, ?)),

{f2(J2,1) = V1, f2(J2,2) = V2, f2(J2,3) = V3})
A3 = (100, ((0, 37, ?)), {f3(J3,1) = V2})

where “?” denotes information that needs to be decided at

run-time.

Fig. 2. Scheduling Procedure

1) At t = 0, assume two jobs J1,1(A1) and J2,1(A2) are

released to V1 and J3,1(A3) is released to V2 . Since J3,1 has

no other jobs to compete with on V2, J3,1 will be immediately

executed on V2. Hence, the local deadline for J3,1 is set as

37 (d3,1 = 37). On the other hand, J1,1 and J2,1 have to

be scheduled based on a certain order. If J1,1 is the last one

to execute, its finish time will be 33. By time 33, L(A1, 33) =

D1−(
3∑

k=1

e1,k−Exeapp(A1, 33))−33 = 77−(66−24)−33 = 2. If J2,1

is the last one to execute, its finish time will be 33. L(A2, 33) =

D2 − (
3∑

k=1

e2,k − Exeapp(A2, 33)) − 33 = 78 − (41 − 9) − 33 = 13.

Since L(A2, 33) > L(A1, 33), we set J1,1 to be the first one and

J2,1 to be the last one to execute on V1. As a result, the local

deadline for J1,1 is set as 24 (d1,1 = 24), the local deadline

of J2,1 is set as 33 (d2,1 = 33).

2) At t = 24, J1,1 finishes execution on V1 and J1,2 is thus dis-

patched on V2. Hence, Ω(V2, 24) = {J1,2, J3,1}. Exe(J3,1, 24) =

24 and J3,1 has 13 time units left to be executed. If we

execute J1,2 last on V2, then J1,2 finishes execution at time 64,

L(A1, 64) = −2. If J3,1 is executed last instead, L(A3, 64) = 36.

J1,2 is thus executed first, after which J3,1 is executed.

Therefore, d1,2 = 51, d3,1 = 64.

3) At t = 33, J2,1 finishes execution on V1 and J2,2 is

dispatched on V2. Ω(V2, 33) = {J1,2, J2,2, J3,1}. Exe(J1,2, 33) = 9

and J1,2 has 18 time units left to execute. Exe(J2,2, 33) = 0

and J2,2 has 23 time units left. Exe(J3,1, 33) = 24 and J3,1
has 13 time units left to execute. If J1,2 is the last one to

execute, then L(A1, 87) = −25. Similarly, L(A2, 87) = −18,

L(A3, 87) = 13. The order of execution is J1,2, J2,2 and J3,1,

and d1,2 = 51, d2,2 = 74, d3,1 = 87.

4) At t = 51, J1,2 finishes execution on V2 and J1,3 is

dispatched on V3. J2,2, J3,1 continue their execution on V2.
5) At t = 74, J2,2 finishes execution on V2 and J2,3 is

dispatched on V3. J1,3 finished executing on V3 and left

the system at t = 65. J2,3 is immediately executed without

competition with J1,3 on V3 and will finish its execution at

83. J3,1 continues its execution on V2 and will finish at 87.
In this example, A1 and A3 finish their execution before

their end-to-end deadlines, but A2 fails to meet its end-to-end

deadline. Hence, the application successful ratio γ = 2
3 = 67%

and the delay execution ratio for J2 is η(A2) =
83−78

78 = 6%.

The detailed scheduling procedure of jobs on each processing

unit is shown in Fig. 2. �
However, in fact, all A1, A2 and A3 can finish successfully

before their end-to-end deadlines. In other words, available

laxity time is not the best way to measure the delay impact of

individual applications.
If an application is delayed, the possibility that it can

still finish before its end-to-end deadline is affected by three

aspects: 1) the available remaining laxity time; 2) the total

remaining execution demand; and 3) the possible competition

with other applications during its future execution. A local

processing unit cannot predict the potential competition of

the scheduled applications on downstream processing units;

it can, however, have the knowledge of the remaining laxity

time and remaining execution demand of each application. The

delay impact of an application, which a processing unit should

consider when deciding job execution order, must take into

consideration of these two aspects.
For application Ai, assume its corresponding job Ji,k is

being executed or waiting for being completed at time t. If

the to-be-delayed time of Ji,k is Dly(Ji,k, t) and the remaining

execution of Ji,k is ei,k − Exe(Ji,k, t), then Ji,k will finish

its execution at fi,k = t + Dly(Ji,k, t) + ei,k − Exe(Ji,k, t). As

shown in Fig. 3, the time interval between the current time

t and its end-to-end deadline Di consists of three parts:

Dly(Ji,k, t), remaining work of Ai, i.e.,
li∑

k∗=1

ei,k∗ −Exeapp(Ai, t)

(Exeapp(Ai, t) = Exeapp(Ai, t + Dly(Ji,k, t)) = Exeapp(Ai, fi,k) −
(ei,k − Exe(Ji,k, t))), and remaining laxity time L(Ai, fi,k).

Fig. 3. Time Interval Between Current Time t and Di

At the scheduling point t, depending on the scheduled

position of Ji,k, it will have different Dly(Ji,k, t). Accordingly,

Ai will have different remaining work
li∑

k∗=1
ei,k∗ −Exeapp(Ai, t)

and L(Ai, fi,k) after it is delayed by Dly(Ji,k, t). Rather than

measuring the impact of Dly(Ji,k, t) on Ai’s end-to-end dead-

line missing risk by L(Ai, fi,k), a fair way is to measure the

impact by the portion which delayed time Dly(Ji,k, t) has

accounted within Ai valid relative deadlines (Di − t).
Based on the above information, we have the following

definition:

α(Ai, t): the delay impact factor of Ai at time t,

α(Ai, t) =
Dly(Ji,k, t)

li∑
k∗=1

ei,k∗ − Exeapp(Ai, t) + L(Ji,k, fi,k)
(2)

where fi,k = t+Dly(Ji,k, t) + ei,k − Exe(Ji,k, t).

Lemma 1: ∀t, Ri ≤ t ≤ Di, if α(Ai, t) = 0, then Ai is

guaranteed to meet its end-to-end deadline.

Proof: the proof is trivial. Since Ai does not consume any

laxity time waiting for the other jobs’ execution at any time

during its end-to-end execution, the finish time of Ai is its end-

to-end execution time
li∑

k=1

ei,k, which is not larger than Di.

Therefore, Ai is guaranteed to meet its end-to-end deadline. �
It is clear that the smaller α(Ai, t) is, the higher the

possibility that Ai meets its end-to-end deadline. Our goal

is to maximize the successful ratio for a given number of

distributed soft real-time applications released in the system,

i.e., minimize the delay impact factor of each application

released in the system. At a local processing unit, since it is

ambiguous to require minimizing the delay impact factor of all

the scheduled applications, our objective becomes minimizing

the maximum delay impact factor among all the applications

whose jobs are executed on the shared local processing unit.

Application’s delay impact factors are decided by their

scheduled order, therefore a proper scheduled order of appli-

cations is a key to achieve the objective. As we schedule jobs

on local processing units based on EDF scheduling algorithm,

the scheduled order of the jobs is actually decided by the local

deadlines assigned to each job.

Research Problem
Given A and V as defined before, let Ω(Vp, t) denote the job

set to be scheduled on processing unit Vp at a scheduling point

t where Vp ∈ V . Ω(Vp, t) is scheduled based on the EDF

scheduling algorithm. We have the following optimization

problem: decide local deadline di,k for each Ji,k on processing

unit Vp in order to:

min : max
Ji,k∈Ω(Vp,t)

α(Ai, t) (3)

s.t. ri,k + ei,k ≤ di,k (4)

di,k − rl,m ≤
∑

Jh,n ∈ Ω(Vp, t),

rh,n ≥ rl,m,

dh,n ≤ di,k

eh,n, where Jl,m ∈ Ω(Vp, t)

(5)

Formula (4) indicates the lower bound of a valid di,k;

formula (5) is the schedulability constraint for jobs in Ω(Vp, t)
to be scheduled by EDF [11].

IV. DELAY-IMPACT-BASED LOCAL DEADLINE

ASSIGNMENT

When multiple jobs are competing for shared resource,

their delayed time depends on their scheduled order. For a

single application, its delayed time gets larger when its job

is scheduled later. Therefore, an application’s delay impact

factor has the largest value if its job is the last one scheduled

among all the possible scheduled positions. For a given job

set Ω(Vp, t), we propose the following criterion to select a job

as the last one to schedule.
Property 1: If Ji∗,k∗ is the last job to schedule among

Ω(Vp, t) at time t, then

α(Ai∗ , t) ≤ α(Ai, t),∀Ji,k ∈ Ω(Vp, t) where

Dly(Ji,k, t) =
∑

Jl,m∈{Ω(Vp,t)−{Ji,k}}
(el,m − Exe(Jl,m, t))

�
For Ji,k (∀Ji,k ∈ Ω(Vp, t)), if it is the last one to be sched-

uled among Ω(Vp, t), then it has its longest to-be-delayed

time among its possible scheduled positions: Dly(Ji,k, t) =∑
Jl,m∈{Ω(Vp,t)−{Ji,k}}

(el,m − Exe(Jl,m, t)). By calculating each

job in Ω(Vp, t) with its longest to-be-delayed time and its

application’s corresponding delay impact factor, Property 1
chooses a job with the minimum delay impact factor to

schedule lastly.

The last scheduled job chosen by Property 1 has the latest

finish time within Ω(Vp, t). We thus assign the latest finish

time as its local deadline to guarantee its EDF-based schedul-

ing order. We call this Delay-Impact-Based local deadline
assignment (DIB), which is described in Algorithm 1.

Algorithm 1: DIB(Ω(Vp, t))

1 while Ω(Vp, t) �= φ do
2 Max Deadline = t+

∑
Ji,k∈Ω(Vp,t)

(ei,k − Exe(Ji,k, t))

3 Min Delay Impact Factor = ∞
4 foreach Ji,k ∈ Ω(Vp, t) do
5 Dly(Ji,k, t) =∑

Jl,m∈{Ω(Vp,t)−{Ji,k}}
(el,m − Exe(Jl,m, t))

6 if α(Ai, t) < Min Delay Impact Factor then
7 Min Delay Impact Factor = α(Ai, t)
8 i∗ = i
9 end

10 end
11 di∗,k∗ = Max Deadline
12 Ω(Vp, t) = Ω(Vp, t)− Ji∗,k∗
13 end

Fig. 4. The Execution Order Of Jobs In o(Vp, t)

In line 2, DIB calculates the maximum local deadline, i.e.,

the latest finish time of Ω(Vp, t), to be assigned to jobs. From

line 4 to line 10, the algorithm chooses the job that satisfies

Property 1. Line 11 assigns the maximum local deadline to

the chosen job, then the job is removed from Ω(Vp, t) in line

12. The same procedure repeats until all the jobs in Ω(Vp, t)
are assigned with respective local deadlines, i.e., they are

assigned with proper scheduling orders. As the size of Ω(Vp, t)
is bounded by |A| = n, the time complexity of DIB is bounded

by O(n2).

Theorem 1: Given the job set Ω(Vp, t), let di,k be the local

deadline assigned to each Ji,k ∈ Ω(Vp, t) by DIB, then di,k
minimizes the given objective in (3).

Proof: Suppose there exists an optimal set of local deadlines

{d+i,k} that is different from the solution {di,k} obtained by

DIB. Then, there exists at least one job Ji,k whose d+i,k is

different from di,k. Let the jobs in Ω(Vp, t) be examined in

the order of the sequence that a job obtains its local deadline

by DIB, i.e., the first examined job J1,k has the largest local

deadline among Ω(Vp, t), the second examined job has the

largest local deadline among (Ω(Vp, t)−{J1,k}), and the last

examined job Jn,k (n = |Ω(Vp, t)|) has its local deadline equal

to t+ en,k − Exe(Jn,k, t). Suppose Jx,k′ is the first job that

has different deadlines d+
x,k′ and dx,k′ in solutions {d+i,k} and

{di,k}, respectively. The job set which excludes previously

examined jobs is denoted as o(Vp, t), o(Vp, t) ⊆ Ω(Vp, t). The

execution orders of jobs in o(Vp, t) decided by {di,k} and

{d+i,k} respectively are shown in Fig. 4.

According to DIB, Jx,k′ has the largest local deadline

among o(Vp, t); assume in {d+i,k} , Jy,k′ has the largest local

deadline among o(Vp, t), x �= y.

According to Property 1, α(Ax, t) ≤ α+(Ay , t). Also,

α+(Ax, t) < α(Ax, t), as Dly+(J
x,k

′ , t) < Dly(J
x,k

′ , t). Therefore,

α+(Ax, t) < α+(Ay , t) ≤ max
Ji,k∈o(Vp,t)

{α+(Ai, t)}. α+(Ax, t) does

not influence the objective function max
Ji,k∈o(Vp,t)

{α+(Ai, t)}

directly in solution {d+i,k}.

We have α(Ax, t) ≤ α+(Ay , t), in addition, α(Ay , t) <

α+(Ay , t), as Dly(J
y,k

′ , t) < Dly+(J
y,k

′ , t). Therefore, the delay

impact factor of Ax and Ay obtained by solution {di,k} is

smaller than or equal to that obtained by {d+i,k}. If Jx,j′ and

Jy,j′ are removed from o(Vp, t), the same proof also applies

to the remaining jobs. As a result, the value of the objective

function obtained by DIB is smaller or equal to the objective

function of solution {d+i,k}. Hence, the solution found by DIB

is optimal. �
Let us revisit Example 1 to demonstrate how DIB is applied

to the example.

1) At t = 0, Ω(V1, 0) = {J1,1, J2,1}. If J1,1 is the last one to

execute on V1, then α(A1, 0) =
Dly(J1,1,0)

3∑

k=1
e1,k−Exeapp(A1,0)+L(J1,1,33)

=

9
66−0+2

= 0.13. If J2,1 is the last one to execute instead,

α(J2,1, 0) = 0.45. Since α(A1, 0) < α(A2, 0), J2,1 is assigned

to be the first one to execute and J1,1 is assigned to be the

last one to execute. Therefore, d2,1 = 9, d1,1 = 33.

2) At t = 9, J2,1 finishes execution on V1 and J2,2 is dispatched

on V2. Exe(J3,1, 9) = 9 and J3,1 has 28 times units left to

complete execution. Ω(V2, 9) = {J2,2, J3,1}. α(A2, 9) = 0.68,

α(A3, 9) = 0.34. As α(A3, 9) < α(A2, 9), then we have d2,2 =
32, d3,1 = 60. J1,1 will continue its execution on V1.

3) At t = 32, J2,2 finishes execution on V2 and J2,3 is

dispatched on V3.

4) At t = 33, J1,1 finishes execution on V1, and J1,2 is

dispatched on V2. Exe(J3,1, 33) = 10 and J3,1 has 27 time units

left to complete execution. Ω(V2, 33) = {J1,2, J3,1}. α(A1, 33) =

1.59, α(A3, 33) = 0.675. Since α(A3, 33) < α(A1, 33), we have

d1,2 = 60, d3,1 = 87. J2,3 will continue its execution on V3

and finishes at 41.

As a result, A1, A2, and A3 all successfully finish their

execution at 75, 41, 87, respectively. The detailed scheduling

procedure of jobs on each processing unit is shown in Fig. 5. �

Fig. 5. Scheduling Procedure

V. PERFORMANCE EVALUATION

In this section, we empirically evaluate our DIB algorithm

with three other commonly used local deadline assignment

algorithms, i.e., the OLDA [2], Pure [5], and Norm [6].

The OLDA dynamically assigns local deadline that aims to

maximize the laxity time to increase the application successful

ratio. The Pure and Norm are two static local deadline

assignment algorithms which assign total laxity time evenly

or proportional onto each job, respectively. Our evaluation and

comparison focus on two aspects, i.e., application successful

ratio and application execution delay ratio.

Application Type and Instance Generation

Fig. 6. Application Type Generation

TGFF [12] is a well known tool that generates various

task graphs based on real applications. It is often used

to generate benchmark applications in real-time community.

Therefore, we use TGFF to randomly generate different types

of distributed real-time applications. By application type, we

mean an application structure, i.e., job sequences and their

execution processing units. The nodes in a TGFF graph have

precedence constraints, which correlates to the execution order

of interdependent jobs belonging to an application. Based

on the structure of an TGFF graph, we do the following

mapping: 1) a node in a TGFF graph corresponds to a job; 2)

a direct edge in a TGFF graph corresponds to a precedence

constraint on the execution order between two jobs in the same

application; 3) a path in a TGFF graph corresponds to an

execution order of jobs in an application; 4) the number of

paths corresponds to the number of applications in the system;

5) the height of a TGFF graph corresponds to the number of

processing units in the system. Fig. 6(a) shows a task graph

generated by TGFF. Based on the height from the root node

(node 0) to the sink node (node 8), the graph has four layers.

Hence, we assume there are four processing units. The jobs

that are on the same layer are assigned to the same processing

unit as shown in Fig. 6(b)3.
Once the structure of the application is generated, the next

step is to generate timing information for each application, i.e.,

the end-to-end execution time, the end-to-end deadline, and the

execution time for each job within the application(workload on

each processing unit). We therefore obtain concrete application

instances. Depending on the execution time distribution among

jobs within an application, we characterize two different

workload scenarios: 1) balanced workload, i.e., the execution

time of different jobs within an application has a high

probability to be the same; and 2) unbalanced workload, i.e.,

the execution time of different jobs within an application has a

high probability to be different. We use the methods presented

in [13] to generate the two different types of workloads.

System Load Generation
As system load can be changed from many sources, we

conduct the experiments from three aspects to monitor the

performance of the four local deadline assignment approaches:

1) The applications/processors ratio (β). As the number of

processing units in the system is fixed, by increasing β, the

number of applications released to the system will increase, so

does the system load. 2) The application execution density (ε):

ε =
li∑

k=1

ei,k/Di. The increasing of ε indicates that the workload

demand released to the system will also increase. 3) The

end-to-end deadline distribution (δ). δ mimics the end-to-end

deadline variance among application set from the average end-

to-end deadline (Davg). In particular, the end-to-end deadline

of applications varies between [Davg(1 − δ), Davg(1 + δ)].
Increasing δ implies a decrease of the system workload.

Experiment Setting
Applications and their execution paths are randomly generated

by TGFF. For each application type generated by TGFF, a set

of application instances is generated with concrete parameters

for processing units to execute. The experiment is repeated

on 5 different application types, i.e., 5 different TGFF graphs,

with 500 different sets of application instances. We take the

average value of the 5×500 = 2500 tests. We set the number

of processing units in the system as 40 and the average end-

to-end deadline value of jobs (Davg) as 1000. We have run

10 groups of experiments under each case of system load

generation, the mapping between group index and the detailed

parameters are shown in the following table:

Group Index β ε δ
ε = 0.5 β = 5.0 β = 5.0
δ = 50% δ = 50% ε = 0.5

1 1.0 0.1 0%
· · · · · · · · · · · ·
10 10.0 1.0 90%

Experiment Results
3It is worth noting that Fig. 6 only serves as an example to show how we

can transfer a TGFF graph to an application type. In the experiments, a set of
TGFF graphs are randomly generated to have a broader coverage on different
application types.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Applications/Processors Ratio β

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 S

u
cc

e
ss

fu
l R

a
tio

γ DIB
OLDA
Pure
Norm

(a) ε = 0.5, δ = 50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Application Execution Density ε

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 S

u
cc

e
ss

fu
l R

a
tio

γ DIB
OLDA
Pure
Norm

(b) β = 5.0, δ = 50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End to End Deadline Distribution δ

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 S

u
cc

e
ss

fu
l R

a
tio

γ DIB
OLDA
Pure
Norm

(c) ε = 0.5, β = 5.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0

1

2

3

4

5

6

7

8

9

10

Average Applications/Processors Ratio β

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 E

xe
cu

tio
n
 D

e
la

y
R

a
tio

η

DIB
OLDA
Pure
Norm

(d) ε = 0.5, δ = 50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

8

9

10

Average Application Execution Density ε

A
ve

ra
g
e
 A

p
p
lic

a
tio

n
 E

xe
cu

tio
n
 D

e
la

y
R

a
tio

η

DIB
OLDA
Pure
Norm

(e) β = 5.0, δ = 50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
0

1

2

3

4

5

6

7

8

9

10

End to End Deadline Distribution δ

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 E

xe
cu

tio
n
 D

e
la

y
R

a
tio

η

DIB
OLDA
Pure
Norm

(f) ε = 0.5, β = 5.0
Fig. 7. Balanced Workload

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Applications/Processors Ratio β

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 S

u
cc

e
ss

fu
l R

a
tio

γ DIB
OLDA
Pure
Norm

(a) ε = 0.5, δ = 50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Application Execution Density ε

A
ve

ra
g
e
 A

p
p
lic

a
tio

n
 S

u
cc

e
ss

fu
l R

a
tio

γ DIB

OLDA

Pure

Norm

(b) β = 5.0, δ = 50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End to End Deadline Distribution δ

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 S

u
cc

e
ss

fu
l R

a
tio

γ DIB
OLDA
Pure
Norm

(c) ε = 0.5, β = 5.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
0

1

2

3

4

5

6

7

8

9

10

Average Applications/Processors Ratio β

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 E

xe
cu

tio
n
 D

e
la

y
R

a
tio

η

DIB
OLDA
Pure
Norm

(d) ε = 0.5, δ = 50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

8

9

10

Average Application Execution Density ε

A
ve

ra
g
e
 A

p
p
lic

a
tio

n
 E

xe
cu

tio
n
 D

e
la

y
R

a
tio

η

DIB
OLDA
Pure
Norm

(e) β = 5.0, δ = 50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
0

1

2

3

4

5

6

7

8

9

10

End to End Deadline Distribution δ

A
ve

ra
g
e

A
p
p
lic

a
tio

n
 E

xe
cu

tio
n
 D

e
la

y
R

a
tio

η

DIB
OLDA
Pure
Norm

(f) ε = 0.5, β = 5.0
Fig. 8. Unbalanced Workload

Under a balanced workload, the average application successful

ratio and average application execution delay ratio relating to

the change of β, ε, and δ, respectively, are shown in Fig. 7.

From Fig. 7, we can make the following observations:

1) The average successful ratio decreases and the average

application execution delay ratio increases along with the

increase of system load. The increasing of system load

indicates that more applications will miss their end-to-end

deadlines, which results in a smaller application successful

ratio and a larger application execution delay ratio.

2) It is clear that the DIB performs the best among the

four approaches with as much as 50%, 35%, 35% larger

average successful application ratio than the OLDA, Pure,

and Norm, respectively. The DIB also results in as much as

100% smaller average application execution delay ratio than

the OLDA algorithm. The OLDA performs the worst. This

is because the OLDA dynamically assigns local deadlines to

jobs of applications only based on available laxity time. It

works better than the Pure and Norm when job removals are

considered, since the latter two algorithms statically assign

local deadlines without considering resource competition. If

there is a heavy competition among applications on a limited

resource, many jobs (applications) missing their assigned local

deadlines will be removed. However, when removing jobs that

miss their local deadlines is not considered, the OLDA cannot

take advantage of obtaining a larger application successful

ratio by removing a few jobs when they miss local deadlines.

Instead, it encounters a larger application execution delay ratio

and a smaller successful ratio. On the other hand, the Pure

and Norm can catch up during execution at later stages even

if the jobs miss the local deadlines at early stages. As the

DIB considers delay impact at every step during scheduling

process, its performance is the best.

3) Under a balanced workload, the performance of the Norm

and Pure converges. This is because the deadline assignment

results of the two approaches does not make much difference

if the execution time of different jobs of an application has a

high probability to be the same.

4) Since δ adjusts the variation of end-to-end deadlines

of applications, it does not have the direct and significant

contribution to the change of workload as β and ε do. As

a result, the change of δ does not make a large impact

either on applications’ average successful ratio or on execution

delay ratio comparing with β and ε. The variance of all four

algorithms with respect to the average application successful

ratio is within 5%, and within 100% with respect to the average

application execution delay ratio.

Under an unbalanced workload, the average successful

application ratio and average application execution delay ratio

is shown in Fig. 8.

1) Comparing Fig. 8 with Fig. 7, the performance of the

system decreases under an unbalanced workload with a smaller

average application successful ratio and a bigger average ap-

plication execution delay ratio. Take the DIB for example, the

decrease of average application successful ratio and increase

of average application execution delay ratio is as much as 55%
and 350%, respectively. This is because when the execution

time of different jobs in an application has a high probability

to be different, the jobs of different applications with larger

execution time may all compete on the same processing units.

Under such scenarios, some processing units become the

“bottleneck”, while others have less burden. Therefore, the

performance of the system deteriorates due to the unbalanced

local processing unit utilization.

2) The DIB still performs the best among the four approaches,

while the OLDA performs the worst. The difference between

the DIB and OLDA is up to 25% with respect to average

application successful ratio and 280% with respect to the

average application execution delay ratio.

3) The performances of the Norm and Pure diverge: the Pure

performs better than the Norm with up to 10% larger average

application successful ratio and up to 150% smaller average

application execution delay ratio.

VI. CONCLUSION

For distributed real-time applications, due to resource con-

tention and unavailable global information at local processing

units, deciding an execution order of jobs to meet their

applications’ end-to-end deadlines is a challenge. In this paper,

we first present a “delay impact factor” to measure, at a local

processing unit, the risk of missing an application’s end-to-

end deadline at run-time. Based on that, we then develop the

delay-impact based (DIB) local deadline assignment algorithm

to assign local deadlines to jobs of distributed soft real-time

applications, so that the execution order of jobs according

to such deadlines can maximize the application’s successful

ratio. We theoretically prove that DIB presents the local

optimal solution to minimize the delay impact of the scheduled

application set. Our experimental results also show significant

advantages of the DIB over the counterparts in terms of larger

application successful ratio and smaller application execution

delay ratio.

REFERENCES

[1] L. R. Welch and S. Brandt, “Toward a realization of the value of
benefit in real-time systems,” in Parallel and Distributed Processing
Symposium, International, vol. 3. IEEE Computer Society, 2001, pp.
30 093a–30 093a.

[2] S. Hong, T. Chantem, and X. Hu, “Meeting end-to-end deadlines
through distributed local deadline assignments,” in Real-Time Systems
Symposium (RTSS), 2011 IEEE 32nd. IEEE, 2011, pp. 183–192.

[3] M. Di Natale and J. A. Stankovic, “Dynamic end-to-end guarantees in
distributed real time systems,” in Real-Time Systems Symposium, 1994.,
Proceedings. IEEE, 1994, pp. 216–227.

[4] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[5] B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed soft
real-time system,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 8, no. 12, pp. 1268–1274, 1997.

[6] J. Jonsson and K. G. Shin, “Robust adaptive metrics for deadline
assignment in distributed hard real-time systems,” Real-Time Systems,
vol. 23, no. 3, pp. 239–271, 2002.

[7] R. Bettati, “End-to-end scheduling to meet deadlines in distributed
systems,” Ph.D. dissertation, University of Illinois, 1994.

[8] P. Jayachandran and T. Abdelzaher, “Transforming distributed acyclic
systems into equivalent uniprocessors under preemptive and non-
preemptive scheduling,” in Real-Time Systems, ECRTS’08. Euromicro
Conference on. IEEE, 2008, pp. 233–242.

[9] P. J. and T. A., “End-to-end delay analysis of distributed systems with
cycles in the task graph,” in Real-Time Systems, ECRTS’09. Euromicro
Conference on. IEEE, 2009, pp. 13–22.

[10] J. Lee, I. Shin, and A. Easwaran, “Convex optimization framework for
intermediate deadline assignment in soft and hard real-time distributed
systems,” Journal of Systems and Software, vol. 85, no. 10, pp. 2331–
2339, 2012.

[11] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Systems, vol. 2,
no. 3, pp. 181–194, 1990.

[12] R. Dick, D. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of the 6th international workshop on Hardware/software
codesign. IEEE Computer Society, 1998, pp. 97–101.

[13] E. Bini and G. Buttazzo, “Biasing effects in schedulability measures,”
in Real-Time Systems, 2004. ECRTS’04. Proceedings. 16th Euromicro
Conference on. IEEE, 2004, pp. 196–203.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

