
Tech Report: Schedulability Analysis for Real-time
Task Set on Resource with Performance
Degradation and Periodic Rejuvenation

Xiayu Hua, Chunhui Guo, Hao Wu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616, USA

{xhua, hwu28, cguo}@hawk.iit.edu

Douglas Lautner
Motorola

Chicago, IL 60654, USA
dlautner@hawk.iit.edu

Shangping Ren
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616, USA

ren@iit.edu

Abstract—Most schedulability analyses in the literature assume
that the performance of computing resource does not change over
time. However, due to ever increased complexity of computer
system, software aging issues become more difficult, if not
impossible, to eradicate. Hence, the assumption that computing
resource has a constant performance in its entire lifetime does
not hold in real world long-standing systems. In this paper, we
study real-time task schedulability analysis under a resource
model when the resource’s performance degrades with a known
degradation function and the resource is periodically rejuvenated.
The resource model is referred to as P 2-resource model for
performace degradation and periodic rejuvenation. We address
three real-task schedulability related questions under the P 2-
resource model, i.e., (1) resource supply bound provided by
the P 2-resource; (2) task set utilization bounds under Earliest
Deadline First (EDF) and Rate Monotonic (RM) scheduling
policies, respectively; and (3) experimentally study the tightness
of the bounds developed, and the impact of resource degradation
rate, rejuvenation period, and rejuvenation cost on the bounds.

I. INTRODUCTION

Since the publication of the seminal paper by Liu and
Layland [1] in 1973, real-time task scheduling problem under
different resource models has been studied intensively. How-
ever, most of the studies rely on a strong assumption that
the computing resource’s performance does not change during
its lifetime. Unfortunately, for many long-standing real-time
applications, such as data acquisition system(DAQ) [2], [3],
[4], [5], deep-space exploration programs [6], and SCADA
systems for power, water and other national infrastructures [7],
[8], [9], the performance of computational resources decrease
notably after a long continuous execution period.

We also collected over a twenty-day period the CPU and
memory usages consumed by a data monitoring software
deployed on a Fermilab control system. It is depicted in
Fig. 1. As shown in the figure, both the CPU consumption
and memory consumption by the data monitoring software
increase with time. As the data monitoring software is the only
application deployed on the computer, under normal operation,
both the CPU consumption and memory consumption used by
the software would remain at a constant level. However, as

the figure indicates, when system’s continuous operation time
increases, the application consumes more resources. In other
words, the amount of computational power provided by system
in a unit time keep decreasing when the system is running.

0 5 10 15 20

80

90

100

Days

C
PU

U
til

iz
at

io
n

(%
)

3.1

3.2

·105

M
em

or
y

(K
B

)

CPU Utilization
Memory Usage

Fig. 1. Aging Effect on Fermi Monitoring System

The root cause of this phenomenon is software error ac-
cumulation and memory leak, which is also referred to as
software aging problem [10]. Software bugs generally exist in
any software, especially large and complex software systems.
It is impractical, if not impossible, to determine and fix all of
the bugs in software [10]. Due to the software aging problem,
from application’s perspective, the resources’ performance
continuously decreases while the application is running and
hence the execution of the application keeps slowing down. If
the running time of a system is sufficiently long, the software
errors could consume all of the resources and the application
stops working eventually.

Apparently, the traditional resource models which assume
the resource performance does not change are not accurate
for real world scenarios where the software aging problem
is ubiquitous and the resource performance degradation is
unavoidable. To keep the long-standing system functional,
software rejuvenation [11] techniques are introduced as the
countermeasure to recover the resource performance. However,
software rejuvenation also introduces extra overhead. In fact,



when resources are performing software rejuvenation, they are
not available to the applications. Hence, from application’s
perspective, such resources are only periodically available and
even within their available time, the resource performances
are continuously decreasing. To reflect these characteristics,
we introduce a new resource model, the P 2-resource, to char-
acterize resources with performance degradation and periodic
rejuvenation. Under the P 2-resource model, we study (1)
resource supply bound provided by the P 2-resource; (2) task
set utilization bounds under Earliest Deadline First (EDF) and
Rate Monotonic (RM) scheduling policies, respectively; and
(3) experimentally study the tightness of the bounds developed,
and the impact of resource degradation rate, rejuvenation
period, and rejuvenation cost on the bounds.

The rest of the paper is organized as follows: we discuss
related work in Section II. The P 2-resource model is formally
defined in Section III. The resource supply bound and linear
supply bound of a P 2-resource are studied in Section IV. The
utilization bounds for a task set under EDF and RM scheduling
policies on a P 2-resource are presented in Section V and
Section VI, respectively. We further experimentally study the
tightness of the two bounds and the impacts of different re-
source factors on the two bounds in Section VII. We conclude
our work in Section VIII.

II. RELATED WORK

In 1973, Liu and Layland [1] first introduced the earliest
deadline first (EDF) and the rate monotonic (RM) scheduling
policies for real-time systems and provided the utilization
bounds for both EDF and RM scheduling policies. In the
following four decades, the real-time scheduling problem has
been extensively studied. The main research focus is on
developing new scheduling algorithms for real-time scheduling
problem [12], [13] and improving utilization bounds for both
EDF and RM scheduling policies on single [14], [15] and
multiple processors [16], [17], [18] under different constraints
(preemptive[19] vs non-preemptive [20]) and for different
task models (synchronous vs asynchronous tasks, harmonic
task set [12], mixed-criticality task set [21],etc. ). However,
most of the aforementioned work is based on a continuous
and constant resource model , i.e., the resource is always
available to applications and its performance does not change
(as illustrated in Fig. 2(a)).

One exception is the research on the resource with Dynamic
Voltage and Frequency Scaling (DVFS) ability. To reduce
energy consumption of task execution, the speed of modern
processors can be lowered via (DVFS) technology [22], [23].
Hence, in a DVFS-available system, the resource model is
changed from the continues and constant resource model to
a continues resource model with performance variations (as
illustrated in Fig. 2(b)). The schedulability analysis based
on the DVFS resource model is studied intensively by the
research community [22], [23], [24]. In the literature, task
schedulability study under the DVFS resource model makes
two major assumptions: (1) computing resource performance
can switch between a finite number of levels and once it is

switched to a level, it remains at the level until the DVFS
switch it to another level [25], [26], and (2) the performance
change via DVFS is controllable and voluntary.

On the other hand, as pointed in [27], [28], software aging
problem is essentially error accumulation and memory leaking
caused by software defects which are difficult to eradicate if at
all. The computing resource performance degradation caused
by software aging is progressive and involuntary as shown
in Fig. 2(c). Therefore, neither the continuous and constant
resource model nor the DVFS resource model is sufficient for
abstract the resource with performance degradation caused by
software aging process.

Due to the resource performance degradation, the appli-
cation will eventually stop working, which is unacceptable
by any systems. Hence, software rejuvenation technology is
introduced as a countermeasure [10], [11], [29]. Through reju-
venation, systems regain their original performances. However,
the computing resource becomes unavailable to applications
when the rejuvenation is in progress. Therefore, from an
application’s point of view, resource with rejuvenation can be
characterized as a P 2-resource that is periodically available
and with performance degradation as illustrated in Fig. 2(d).

From Fig. 2(d), it is not difficult to see that the P 2-
resourceis a periodic resource. The concept of the constant
periodic resource was first introduced by Shigero et al. in
1999 [30]. Mok et al. [31] and Feng et al. [32] extended
Shigero’s original periodic resource model to the fixed-pattern
periodic resource model and provided theoretical analysis on
the schedulability of real-time task set under this model.
Later, Shin et al. further extended the fixed-pattern periodic
resource model to the dynamic pattern periodic resource
model and provided formal analysis under both EDF and
RM scheduling policies [33], [34], [35]. However, all the
literature work on periodic resources are based on one general
assumption, i.e., when resources are available to applications,
their computational power do not change. Hence, none of
the existing theoretic results obtained under constant perfor-
mance periodic resources (we refer this resource model as
CP -resource model) can be directly applied under the P 2-
resource model.

If considering the resource performance degradation as a
special periodic task with increased utilization, we can trans-
form a resource with performance degradation as a periodic
resource with constant performance and with a hidden task that
has increased resource consumption running on the resource.
Fig. 2(f) depicts this scenario. A similar case is studied
in [36] where the author call this special task as a rhythmic
task. In their work, they define the rhythmic task as a task
with decreasing period and hence increasing utilization. The
authors studied the schedulability when the system has one
rhythmic task and one or multiple regular tasks. Their results
are based on the assumption that the period of the rhythmic
task is smaller than any of the regular tasks. However, for
the problem we intend to solve, the rejuvenation period is
often much larger than any of application tasks’ periods due
to the slow progress of aging effect [37]. Hence, the method



of considering resource degradation as a rhythmic task can not
be directly applied.

In this paper, we focus on the schedulability analysis for
the P 2-resource model under both EDF and RM scheduling
policies. We believe that the P 2-resource model is a more
generalized resource model that can easily transformed to
the continuous and constant resource model [1] and constant
periodic model [34]. In next section, we formally define the
P 2-resourcemodel and formulate the problems to be studied
in the paper.

0

0.5

1

T

Pe
rf

or
m

an
ce

(a) Continues and Constant Resource
Model

0

0.5

1

T

Pe
rf

or
m

an
ce

(b) DVFS Resource Model

0

0.5

1

T

Pe
rf

or
m

an
ce

(c) Resource Model with Perfor-
mance Degradation

0

0.5

1

Π 2Π

T

Pe
rf

or
m

an
ce

(d) P 2-resource Model

0

0.5

1

Π 2Π

T

Pe
rf

or
m

an
ce

(e) Constant and Periodic Resource
Model

0

0.5

1

Π 2Π

Rhythmic Task

T

Pe
rf

or
m

an
ce

(f) Resource With Rhythmic Task

Fig. 2. Resource Models

III. MODELS AND PROBLEM FORMULATION

A. Resource model and assumptions

As illustrated in Fig.2(c), we consider both the performance
degradation and the rejuvenation time cost to model the
resource. Note that by resource performance, we mean the
computation cycles per unit time provided by the resource to
applications. In the following of this section, we first provide
the definitions and models used in this paper and then give
the formal formulation of the problems we are to solve.

Resource performance degradation function
We use function f(t) to denote the resource performance

at time t. We assume that f(t) is continuous non-increasing
and that f(0) = 1.

Resource Rejuvenation
We assume that the resource is repeatly rejuvenated with

period π and that the resource performance never decreases to
zero, i.e., f−1(π) > 0. We also assume that the rejuvenation
process is atomic and each rejuvenation takes φ time to
complete. After each rejuvenation, the resource performance
is reset to f(0), i.e., f(kπ) = f(0) where k ∈ N+.

P 2-resource Model

A P 2-resourceR is characterized by a triple (f(t), π, φ),
where f(t) is the resource performance degradation function,
π is the resource rejuvennation period, and φ is the
rejuvenation time cost. We assume the resource starts at time
zero.

Task Model
The task model considered in this paper is similar to

the one defined by Liu and Layland [1]. A task set Γ =
{τ1, τ2, . . . , τn} has n independent periodic tasks that are all
released at time 0. Each task τi ∈ Γ is a 2-tuple (Pi, ei), where
Pi is the inter-arrival time between any two consecutive jobs
of τi (also called period), and ei is the task execution time
calibrated under maximum performance f(0) = 1 of a given
P 2-resource. When the resource performance is f(t) at time
t, the task’s actual worst-case execution time is ei/f(t). The
utilization of the task set Γ is denoted as UΓ, where

UΓ =
∑
τi∈Γ

ei/Pi

We use H to denote the hyper-period of Γ where H is the
least common multiple of Pi for all τi ∈ Γ.

We use Pmin to denote the minimum task period of the task
set Γ, i.e.,

Pmin = min{Pi|∀τi ∈ Γ}.

If Pmin ≤ φ, a task set may not be schedulable no matter how
small its utilization is, as φ is the resource unavailable time
due to rejuvenation for each rejuvenation period. Hence, we
assume Pmin > φ.

B. Problem formulation

The paper is to study real-time task schedulability under the
P 2-resource. We take two steps to address the problem. First,
we analyze the minimal resource supply of a P 2-resource in
a time interval with given length. Second, we present the
sufficient utilization bounds (UB) under both EDF and RM
scheduling policies for a task set on a P 2-resource. The two
problems are as follows.

Problem 1. Given a P 2-resource R(f(t), φ, π), determine its
supply bound function and linear supply bound function.

Problem 2. Given a P 2-resource R(f(t), φ, π) and a task set
Γ and a task set Γ, determine the utilization bounds of task set
Γ on R under EDF and RM scheduling policies, respectively.

As for any P 2-resource, the strategy to solve the problems
is the same. To simplify mathematical transformations and
deviations, and focus more on analysis strategies, in following
sections we assume that the resource performance function is
a linear decreasing function, i.e.,

f(t) = 1− a · t (1)

where a is a constant and 0 ≤ a < 1.



IV. P 2-RESOURCE SUPPLY BOUND ANALYSIS

To analyze task schedulability on P 2-resources, we first
need to analyze the resource’s supply bound. In this section,
we present the supply bound function (SBF) and the linear
supply bound function (LSBF) of a P 2-resource.

We use θ to denote the total computational cycles provided
by a P 2-resource within one rejuvenation period (π), which
is given by the following equation.

θ =

∫ π−φ

0

f(t)dt (2)

In the next step, we derive the minimal supply bound
function of a P 2-resource R.

Lemma 1. Given a P 2-resource R(f(t), φ, π), its minimal
supply function (msf) in a time interval with length t(t ≤ π)
is

msf(t, π, φ) =

{ ∫ π−φ
π−t f(x)dx if φ < t ≤ π

0 if 0 ≤ t ≤ φ
(3)

Proof. We prove the lemma in the following two complemen-
tary cases separately.
Case 1: 0 ≤ t < φ

As resource R is not available during its rejuvenation φ
time, hence the worst case is that the entire time interval is
in the rejuvenation period. Therefore, like time interval t1 in
Fig. 3, the resource’s minimal supply is 0 in this case.
Case 2: φ ≤ t ≤ π

As we assumed in Section III that the resource’s perfor-
mance function f(x) is a non-increasing function. Hence, the
minimal resource supply when 0 < t ≤ π is

∫ π−φ
π−t f(x)dx.

Time interval t2 in Fig. 3 is an example of this case.

Fig. 3. Minimal Supply Function

We now extend the time interval length to an arbitrary value
and give the P 2-resource’s supply bound function and linear
supply bound function in the following theorems.

Theorem 1. Given a P 2-resource R(f(t), φ, π), its supply
bound function (SBF) is

sbf(t) =

⌊
t

π

⌋
θ + msf(t mod π, π, φ). (4)

Proof. For a given time interval t, it contains
⌊
t
π

⌋
entire

periods that supply
⌊
t
π

⌋
θ amount of computational cycles

resource. For the remaining part of the time interval, its length
is (t mod π) and its minimal supply is msf(t mod π, π, φ).
Hence, the supply bound function is calculated as Eq.(4).

Theorem 2. Given a P 2-resource R(f(t), φ, π), we have
(1) the resource’s linear supply bound function lsbf(t)

satisfies

∀t : lsbf(t) ≤ sbf(t) (5)

where lsbf(t) = θ
π (t−Tp)+msf(Tp, π, φ), and Tp = max{π−

π−θ
aπ , φ}, i.e., the lsbf(t) is the lower bound of the sbf(t), and

(2) ∃t : lsbf(t) = sbf(t), i.e., the lsbf(t) a tight bound of the
sbf(t).

Proof. To prove the theorem, we consider when nπ ≤ t <
nπ + φ and nπ + φ ≤ t < (n+ 1)π separately, where n ∈ I .

1) When nπ ≤ t < nπ + φ
Based on Eq.(4), we have sbf(t) = nθ. As lsbf(x) is
a monotonically increasing function, we have lsbf(t) <
lsbf(nπ + φ). Now, we need to prove lsbf(nπ + φ) ≤
nθ. We consider the following two complementary cases
based on the value of Tp:
• Case 1: Tp = φ. Since msf(φ, π, φ) = 0 and lsbf(x)

is a non-decreasing function, we have

lsbf(nπ+φ) =
θ

π
(nπ+φ−Tp)+msf(Tp, π, φ) = nθ

(6)
• Case 2: Tp = π − π−θ

aπ ≥ φ. Since f(x) is a non-
increasing function, we have f(π−φ) ≤ f(π− (π−
π−θ
aπ )) = θ

π and

msf(t, π, φ) =

∫ π−x

π−φ
f(t)dt ≤ θ

π
(t− φ)

Therefore, msf(Tp, π, φ) ≤ θ
π (Tp− φ) and

lsbf(nπ+φ) =
θ

π
(nπ+φ−Tp)+msf(Tp, π, φ) ≤ nθ

Since for both cases, lsbf(nπ + φ) ≤ nθ, we have
lsbf(t) ≤ sbf(t) when nπ ≤ t < nπ + φ.

2) When nπ + φ ≤ t < (n+ 1)π
For this scenario, we want to prove sbf(t)− lsbf(t) ≥ 0.
To simplify the notation, we let t′ = t mod π.
• Case 1: Tp = φ. We first do the following transfor-

mation.

sbf(t)− lsbf(t) =

nθ + msf(t′, π, φ)− θ

π
(t− φ)− msf(φ, π, φ)

= msf(t′, π, φ)− θ

π
(t′ − φ)

Since Tp = φ, which indicates π − π−θ
aπ ≤ φ, we

have f(π−φ) ≥ f(π− (π− π−θ
aπ )) = θ

π . Therefore,

msf(t, π, φ) =

∫ π−x

π−φ
f(t)dt ≥ θ

π
(t− φ)

and hence msf(t′, π, φ) ≥ θ
π (t′−φ), which indicates

sbf(t)− lsbf(t) ≥ 0.
Specially, when t′ = Tp = φ, sbf(t) = lsbf(t).



• Case 2: Tp = π− π−θ
aπ . Similar to the proof in Case

1, we do the following transformation:

sbf(t)− lsbf(t) =

= nθ + msf(t′, π, φ)− θ

π
(nπ + t′ − Tp)

− msf(Tp, π, φ)

= msf(t′, π, φ)− θ · t′

π
− msf(Tp, π, φ) +

θ · Tp
π

Let S(t) = msf(t, π, φ) − θ·t
π , then S′(Tp) = 0

which indicates function S(t) has an extreme value
when t = Tp. Moreover, as ∀t ∈ [nπ + φ, (n +
1)π), S′′(Tp) > 0, then when t = Tp, function S(t)
has the minimal value. Therefore,

sbf(t)− lsbf(t) = S(t′)− S(Tp) ≥ 0

Specially, when t′ = Tp, sbf(t) = lsbf(t).
Combine both scenarios together, we have ∀t, sbf(t) −

lsbf(t) ≥ 0. Furthermore, when t = Tp, sbf(t) = lsbf(t).
Hence, Theorem 2 always holds.

Intuitively, lsbf(t) is the tangent line of sbf(t) and Tp is their
first tangent point. Fig.4 depicts the relationship of lsbf(t) and
sbf(t).

Fig. 4. SBF and LSBF

V. TASK SET UTILIZATION BOUND ON
P 2-RESOURCE UNDER EDF SCHEDULING POLICY

Based on the supply bound analysis of P 2-resource given
in Section IV, we derive the sufficient utilization bound under
EDF scheduling policy in this section.

Since the task model we use in the paper is the same as the
task model used in [34], the linear demand bound function
(LDBF) for a task set and the schedulability condition under
EDF scheduling policy are the same. We provide the tasks’
linear demand bound function and the schedulability condition
in the following definition and theorem, respectively.

Definition 1. [34] Given a task set Γ, its linear demand bound
function (LDBF) under EDF scheduling policy is defined as

ldbfEDF(t) = UΓ · t. (7)

Theorem 3. [34] Given a task set Γ and a P 2-resource
R(f(t), φ, π), Γ is schedulable on R under EDF scheduling
policy if

∀t ∈ [0, H] : dbfEDF(t) ≤ sbf(t) (8)

where H is the hyper-period of Γ and dbfEDF(t) =∑
τi∈Γ

⌊
t
πi

⌋
· ei.

To simplify the calculation, in the following corollary, we
further reduce the range of time interval length t that needed
to be checked and replace both the demand bound and the
supply bound with their linear bounds, respectively.

Corollary 1. Given a task set Γ and a P 2-resource
R(f(t), φ, π), Γ is schedulable on R under EDF scheduling
policy if

∀t ∈ [Pmin, H] : ldbfEDF(t) ≤ lsbf(t) (9)

where H is the hyper-period of Γ.

Proof. For a time interval length t that t ∈ [0, Pmin),
dbfEDF(t) = 0. Since sbf(t) ≥ 0, dbfEDF(t) ≤ sbf(t) always
holds over t ∈ [0, Pmin). Hence, we only need to check
time interval length t ∈ [Pmin, H] when determining the
schedulability.

Moreover, according to Theorem 2, we have ∀t : lsbf(t) ≤
sbf(t). With ∀t : ldbfEDF(t) ≥ dbfEDF(t), we further have

∀t : ldbfEDF(t) ≤ lsbf(t)→ dbfEDF(t) ≤ sbf(t)

Therefore, Γ is schedulable on R under EDF policy if Eq.(9)
holds.

In the next step, we analyze the relationship between the
LSBF and the LDBF and derive the utilization bound under
EDF scheduling policy.

For a P 2-resource and a task set, we first give the definition
of the critical time interval length as follow.

Definition 2. Given a P 2-resource R(f(t), φ, π) and a
schedulable task set Γ, the critical time interval length Tc
under EDF scheduling policy is defined as

Tc =
θ
π · Tp− msf(Tp, π, φ)

θ
π − UΓ

(10)

In fact, the critical time interval length Tc is derived from
equation lsbf(t) = sbf(t). In the following lemma, we prove
that if a task set is schedulable, then Tc > 0. Also, if a time
interval’s length is equal or longer than Tc, we further prove
that in this time interval, the minimal resource supply from
the P 2-resource is assuredly equal or larger than the maximal
resource demand of a task set under EDF policy.

Lemma 2. Given a P 2-resource R(f(t), φ, π) and a schedu-
lable task set Γ, their critical time interval length Tc under
EDF satisfies the following conditions:{

Tc > 0

∀t ≥ Tc : lsbf(t) ≥ ldbfEDF(t).
(11)

Proof. Since Γ is schedulable on R, we have UΓ <
θ
π , which

indicates ldbf ′EDF(t) < lsbf ′(t). With ldbfEDF(0) = 0 and
lsbf(0) < 0, we then have Tc > 0.

Moreover, with lsbf(Tc) = ldbfEDF(Tc) and ldbf ′EDF(t) <
lsbf ′(t), we have ∀t > Tc : lsbf(t) > ldbfEDF(t).



Therefore, conditions in Eq.(11) hold.

With the critical time interval length and the schedulability
condition given in Corollary 1, we derive the utilization bound
for a task set on a P 2-resource under EDF policy.

Theorem 4. Given a task set Γ and a P 2-resource
R(f(t), φ, π), the sufficient utilization bound under EDF
scheduling policy is

UBEDF(Pmin, a, π, φ) =
θ

π
−

θ
π · Tp− msf(Tp, π, φ)

Pmin
(12)

where Tp = max{π − π−θ
aπ , φ}.

Proof. According to Corollary 1, the task set Γ is schedulable
on the resource R if ∀t ∈ [Pmin, H] : ldbfEDF(t) ≤ lsbf(t).
Based on Lemma 2, we have ∀t ≥ Tc : ldbfEDF(t) ≤ lsbf(t).
Hence, the task set Γ is guaranteed schedulable on the resource
R if Pmin ≥ Tc. By solving the formula Pmin = Tc, we derive
the utilization bound UBEDF as below:

UBEDF(Pmin, a, π, φ) =
θ

π
−

θ
π · Tp− msf(Tp, π, φ)

Pmin

The proposed P 2-resource model is a generalized model.
Suppose a resource has no performance degradation, then the
rejuvenation process is unnecessary, i.e., f(t) = 1 and φ = 0.
In this case, P 2-resource is de-generalized to a continuous and
constant resource and the utilization bound under EDF policy
UBEDF(Pmin, a, π, φ) becomes the utilization bound given by
Liu and Layland [1], i.e., UBEDF(Pmin, a, π, φ) = 1.

Corollary 2. Given a task set Γ and a P 2-resource R(1, π, 0),
the task utilization bound under EDF scheduling policy is
UBEDF(Pmin, a, π, φ) = 1

Proof. For the given resource R(f(t), φ, π), let θ =∫ π−φ
0

f(t)dt = π. As f(t) = 1 and Tp ≥ φ, lsbf(Tp) =
Tp− φ = Tp. Based on Lemma 2, Tp always exists. Hence,

UBEDF(Pmin, a, π, φ) =
θ

π
−

θ
π · Tp− msf(Tp, π, φ)

Pmin

=
π

π
−

π
π · Tp− Tp

Pmin
= 1.

VI. TASK SET UTILIZATION BOUND ON
P 2-RESOURCE UNDER RM SCHEDULING POLICY

In this section, we analyze the sufficient utilization bound
for a task set on a P 2-resource under the RM scheduling
policy. We first use a theorem and a corollary to derive the
utilization bound and the de-generalized utilization bound,
respectively, for a real-time task set on a P 2-resource under
RM scheduling policy. We then give the formal proof of the
utilization bound theorem.

Theorem 5. Given a P 2-resource R(f(t), φ, π) and a task set
Γ with task number of n and minimal task period Pmin. The

utilization bound of the task set Γ on R under RM scheduling
policy is:

UBRM(Pmin, n, a, π, φ)

=
θ

π
· n[

(
1 +

kπ + π
θmsf(φ+ δ, π, φ)

kπ + φ+ δ

)1/n

− 1]
(13)

where k =
⌊
Pmin
π

⌋
, δ = max{min{λ, π − φ}, 0} and

λ = −a(φ+ kπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Similar to the utilization bound under EDF scheduling
policy, UBRM can also be de-generalized to the utilization
bound for RM policy given in [1] when P 2-resource is de-
generalized to the continuous and constant resource.

Corollary 3. Given a task set Γ and a P 2-resource R(1, π, 0),
the task utilization bound under RM scheduling policy is

UBRM(Pmin, n, a, π, φ) = n(21/n − 1)

Proof. Since f(t) = 1 and φ = 0, we have θ
π = 1 and msf(φ+

δ, π, φ) = φ+ δ. Therefore,

kπ + π
θmsf(φ+ δ, π, φ)

kπ + φ+ δ
=
kπ + φ+ δ

kπ + φ+ δ
= 1

and hence UBRM(Pmin, n, a, π, φ) = n(21/n − 1).

The following parts of this section are dedicated to proving
Theorem 5. To do so, we first determine the utilization bound
of a P 2-resource under the RM scheduling policy with the
restriction that the ratio between any two tasks’ period in Γ
is less than two. We then remove the restriction for arbitrary
task sets.

In our proof, we derive the utilization bound based on
a schedulable task set that has lowest utilization and fully
utilizes the resource, i.e., decreasing the period or increasing
the execution time of any task in this task set makes the task
set un-schedulable.

For a given resource R and a schedulable task set Γ that
fully utilizes R, we take three steps to derive the utilization
bound: (1) we first prove that if UΓ equals to the utilization
bound, then the sum of task execution times of Γ is equal
to sbf(Pmin); (2) we then calculate the Pmin value for Γ that
minimizes UΓ; and (3) we derive the utilization bound based
on the found Pmin value.

Lemma 3. For a real-time task set Γ = {τ1, ..., τn} and
a resource R(f(t), φ, π), under the restriction that the ratio
between any two task periods of Γ is less than 2, if Γ fully
utilizes R under the RM scheduling policy with the smallest
possible UΓ, then it follows that∑

τi∈Γ

ei = sbfR(Pmin) (14)

where Pmin is the smallest task period of Γ.



Proof. We adapt the proof of Lemma 9.1 in [34] to prove
this lemma. Without loss of generality, we assume that for the
tasks in Γ, P1 < P2 < ... < Pn. Under the condition that Γ
is schedulable and Γ fully utilizes R, let U∗Γ denote the least
schedulable utilization bound for Γ and let e∗1, e

∗
2, .., e

∗
n be the

execution times of the tasks τ1, τ2, ..., τn that determine U∗Γ.
Then, we first need to show that:

e∗1 = sbf(P1, P2)

where we define sbf(P1, P2) = sbf(P2)−sbf(P2) for notational
simplicity. We then prove this by contradiction.

Assume that
e∗1 = sbf(P1, P2) + ∆ (15)

Let e′1 = sbf(P1, P2), e′2 = e∗2 + ∆, e′3 = e∗3, ... e′n = e∗n.
Given that e∗1, e

∗
2, ..., e

∗
n guarantee the schedulability of task

set Γ under RM and that any increase in e∗i will make Γ un-
schedulable, it is clear that a workload set with e′1, ..., e

′
n is

schedulable over R and that any increase in e′i will violate
the schedulability of the task set over R. Let U ′Γ denote the
corresponding utilization, we have

U∗Γ − U ′Γ = (∆/P1)− (∆/P2) > 0

Hence, this assumption given in Eq. (15) is false when ∆ >
0. Alternatively, suppose that

e∗1 = sbf(P1, P2)−∆,∆ > 0 (16)

Let e′′1 = sbf(P1, P2), e′′2 = e∗2 − 2∆, e′′3 = e∗3, ..., e′′n = e∗n.
Then, a workload set with e′′1 , e

′′
2 , ..., e

′′
n is also schedulable

over R and any ncrease in e′′i will violate the schedulability
of the task set. Let U ′′ denote the corresponding utilization.
we have

U∗Γ − U ′Γ = −(∆/P1) + 2(∆/P2) > 0

Hence, this assumption given in Eq. (16) is also false, when
∆ > 0. Therefore, if indeed U∗Γ is the least upper bound of
the workload utilization, then e∗1 = sbf(P1, P2). In a similar
way, we can show that e∗2 = sbf(P2, P3), e∗3 = sbf(P3, P4),...,
e∗n−1 = sbf(Pn−1, Pn). Consequently,

e∗n = sbf(0, Pn)− 2(e∗1 + e∗2 + ...+ e∗n−1)

= sbf(0, P1)− sbf(P1, Pn)

Finally, we have
∑
τi∈Γ ei = sbfR(Pmin).

Lemma 4. Given a real-time task set Γ = {τ1, ..., τn} and a
resource R(f(t), φ, π), let k =

⌊
Pmin
π

⌋
and let Pmin denote the

smallest task period of Γ. Under the restriction that the ratio
between any two task periods of Γ is less than two, if Γ fully
utilizes R under RM scheduling policy, then UΓ is minimized
when

Pmin = kπ + φ+ max{min{λ, π − φ}, φ} (17)

for all Pmin ∈ [kπ, (k + 1)π) where

λ = −(aφ+ akπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Proof. For all task sets of which Pmin ∈ [kπ, (k + 1)π), let
P ∗ denote the minimal task periods of the task set Γ∗ which
fully utilizes the resource R with minimal utilization. In the
following parts, we first prove that P ∗ ∈ [kπ + φ, (k + 1)π)
and then calculate the value of P ∗.

(a) Pmin ∈ [kπ, kπ + φ) (b) Pmin ∈ [kπ + φ, (k + 1)π)

Fig. 5. Transformation of Pmin

To prove P ∗ ∈ [kπ + φ, (k + 1)π), we consider the task
sets of which Pmin ∈ [kπ, kπ + φ). Let Γ denote one of such
task sets. As illustrated in Fig. 5(a), we transform Γ = {τi}
to Γ′ = {τ ′i} such that:

τ ′i =

{
τi(ei, Pi), if (Pi ≥ kπ + φ)

τi(ei, kπ + φ), otherwise,
(18)

Since the resource is under rejuvenation during the interval
[kπ, kπ + φ) in the worst case, we have sbf(Pmin) = kθ for
all Pmin ∈ [kπ, kπ + φ]. Therefore, Γ′ is still schedulable on
R and fully utilize R after the transformation.

On the other hand, since the transformation increases the
periods of some tasks, UΓ′ < UΓ. Therefore, all task sets
with Pmin ∈ [kπ, kπ+φ] can be transformed to Γ′ with lower
utilization. In other words, P ∗ ∈ [kπ + φ, (k + 1)π).

In the next step, we consider the task sets with Pmin ∈
[kπ+φ, (k+ 1)π). We let Γ denote one of such task sets and
transform Γ = {τi} to Γ′′ = {τ ′′i } such that{

e′′i = q · ei
P ′′i = q · Pi

(19)

where q = P∗

Pmin
. After the transformation, UΓ = UΓ′′ and

P ′′min = P ∗.
We first make a assumption that the transformed task set Γ′′

is no longer schedulable. Based on this assumption, some e′′i
in Γ′′ need to be decreased in order to make Γ′′ schedulable.
Let Γ′′′ denote the new schedulable task set, then UΓ′′′ < UΓ.
Therefore, for a task set Γ with Pmin 6= P ∗, we can always find
a task set Γ′′′ that fully utilizes R with UΓ′′′ < UΓ. Moreover,
as P ′′′min = P ′′min = P ∗, we can then come to our conclusion
that P ∗ is the minimal task period of the task set which fully
utilizes R and has the minimal utilization.

In the following part, we derive the value of P ∗ by
guaranteeing that the assumption always true, i.e., Γ′′ is not
schedulable.



According to Lemma 3, Γ′′ is not schedulable indicates∑
τ ′′i ∈Γ′′

e′′i > sbf(P ∗)

which can be further transformed into∑
τ ′′i ∈Γ′′

e′′i = q ·
∑
τi∈Γ

ei = q · sbf(Pmin) > sbf(P ∗)

and then
sbf(P ∗)
P ∗

− sbf(Pmin)

Pmin
< 0 (20)

As shown in Fig. 5(b), Pmin can be represented as kπ+φ+δ
over δ ∈ [0, π−φ). To simplify the notation, we define function
F(δ) for δ ∈ [0, π − φ) as

F(δ) =
sbf(kπ + φ+ δ)

kπ + φ+ δ
=
aδ2/2 + (1 + aφ− aπ)δ + kθ

kπ + φ+ δ

With function F(δ), Eq.(20) becomes F(δ∗)−F(δ) < 0 where
δ∗ = P ∗ − (kπ + φ).

Now, we derive the value of δ∗ by the following condition:

∀δ ∈ [0, π − φ),F(δ∗) ≤ F(δ)

This can be done by solving function F′(δ) = 0. If this
function has solution, we let λ denote the solution, i.e.

λ = −a(φ+ kπ) + ((aφ+ akπ)2

− 2a((1 + aφ− aπ)(kπ + φ)− kθ)) 1
2

Since F′′(δ) > 0, we have:

δ∗ =


0, if λ ≤ 0

π − θ, if λ > π − θ
λ, otherwise

(21)

If F′(δ) = 0 has no solution, it indicates (1+aφ−aπ)(kπ+
φ)− kθ > 0, which guarantees F′(0) > 0. Therefore, F(δ) is
monotonically increasing over δ ∈ [0, π − φ). In this case,
we have δ∗ = 0. To simplify the expression, we let λ =
−a(φ+ kπ).

For both cases that F′(δ) = 0 has or has not solution, we
calculate δ∗ based on Eq.(21) as

δ∗ = max{min{λ, π − φ}, 0}

where

λ = −a(φ+ kπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Since F(δ∗) has the minimal value of function F(δ) over δ ∈
[0, π−φ), when P ∗ = δ∗+kπ+φ, Eq.(20) always holds, which
further assures the assumption that Γ′′ is not schedulable is
true. Hence, we come to our conclusion that P ∗ = δ∗+kπ+φ
is the minimal task period of the task set which fully utilizes
R and has the minimal utilization.

With Lemma 3 and Lemma 4, we derive the utilization
bound UBRM for a task set Γ under the RM scheduling policy
under the restrictions that the ratio between any two task
periods of Γ is less than 2.

Lemma 5. Given a P 2-resource R(f(t), φ, π) and a task set
Γ with minimal task period Pmin and task number n. Under
the restriction that the ratio between any two task periods of
Γ is less than 2, the utilization bound of the task set Γ on R
is:

UBRM(Pmin, a, π, φ)

=
θ

π
· n[

(
1 +

kπ + π
θmsf(φ+ λ, π, φ)

P ∗

)1/n

− 1]
(22)

where k =
⌊
Pmin
π

⌋
, P ∗ = kπ + φ + max{min{λ, π − φ}, 0}

and
λ = −a(φ+ kπ) + ((aφ+ akπ)2

−min{2a((1 + aφ− aπ)(φ+ kπ) + kθ), (aφ+ akπ)2}) 1
2

Proof. Without loss of generality, we assume that for the tasks
in Γ, P1 < P2 < ... < Pn. Under the condition that Γ is
schedulable and Γ fully utilizes R, let U∗Γ denote the least
schedulable utilization bound for Γ and let e∗1, e

∗
2, .., e

∗
n be the

execution times of the tasks τ1, τ2, ..., τn that determine U∗Γ.
Then, according to Lemma 3, the execution times e∗1, e

∗
2, ..., e

∗
n

is determined as follow:

e∗1 = sbf(P2)− sbf(P ∗), ..., e∗n−1 = sbf(Pn)− sbf(Pn−1),

Specially,

e∗n = sbf(P ∗)− sbf(0)− (sbf(Pn)− sbf(P ∗))

= kθ + msf(φ+ λ, π, φ)− sbf(Pn) + sbf(P ∗)

Therefore, U∗Γ can be represented as:

U∗Γ =
e∗1
P1

+ ...+
e∗n−1

Pn−1
+ ...+

e∗n
Pn

=
sbf(P2)− sbf(P1)

P1
+ ...+

sbf(Pn)− sbf(Pn−1)

Pn−1

+
kθ + msf(φ+ λ, π, φ)− sbf(Pn) + sbf(P ∗)

Pn

(23)

According to Lemma 4, to find the minimal value of U∗Γ, we
let P1 = P ∗ where P ∗ = kπ + φ+ max{min{λ, π − φ}, φ}.
Furthermore, we replace sbf(t) by lsbf(t) and rewrite Eq.(23)
as follows:

U∗Γ =
lsbf(P2)− lsbf(P ∗)

P ∗
+ ...

+
lsbf(Pn)− lsbf(Pn−1)

Pn−1
+

2lsbf(P ∗)− lsbf(Pn)

Pn

=
θ

π
(
P2

P ∗
+ ...+

Pn
Pn−1

+
kπ + π

θmsf(φ+ λ, π, φ) + P ∗

Pn
− n)

(24)

Then, we calculate the minimum value of U∗Γ by setting the
first derivative of U∗Γ with respect to each Pis equal to zero
and solving the resultant difference equations:



∂U∗Γ/∂Pi =
P 2
i − Pi−1 ∗ Pi+1

Pi−1 · P 2
i

= 0, i ∈ [2, n] (25)

The definition Pn+1 = (kπ + π
θmsf(φ + λ, π, φ) + P ∗)

has been adopted for convenience. Eq.(25) implies that
∀i ∈ [2, n], Pi

Pi−1
= Pi+1

Pi
which means the sequence

{P ∗, P2, ..., Pn} is a geometric sequence. Therefore, the so-
lution for Eq.(25) is

Pi = P ∗ ∗
(

1 +
kπ + π

θmsf(φ+ λ, π, φ)

P ∗

)− i−1
n

(26)

With the solutions of Pis for U∗Γ, we can then derive
UBRM(Pmin, a, π, φ) from Eq.(24) as:

UBRM(Pmin, a, π, φ)

=
θ

π
· n[

(
1 +

kπ + π
θmsf(φ+ λ, π, φ)

P ∗

)1/n

− 1]
(27)

The restriction that the largest ratio between task period
is less than 2 in Lemma 5 can be removed through method
introduced in the proof of Theorem 5 in [1]. Therefore, we
have the closed form of the utilization bound in Theorem 5.

VII. SIMULATION ANALYSIS

Section V and VI give the analytical utilization bound for
real-time task sets on a P 2-resource under EDF and RM
scheduling policies, respectively. In this section, we further
study their tightnesses and the impacts of different factors on
them through simulations.

A. Bound Tightness

Both UBEDF and UBRM are sufficient schedulability bounds
of periodic task sets on P 2-resources. Therefore, it is possible
that a task set with utilization higher than the bound is still
schedulable. If a utilization bound is too conservative, many
schedulable task sets will be measured as un-schedulable and
thus the practical value of the utilization bound is low. To
evaluate how conservative a bound is, we define an evaluatioin
criteria, tightness, as below:

Tightness =
Nsame

Ntotal

where Ntotal is the total number of task sets that are tested and
Nsame is the number of task sets of which the schedulability
determined by the utilization bound is the same as the schedu-
lability determined by the corresponding scheduling policy.

In the following experiments, we measure the tightnesses of
both UBEDF and UBRM with different resource degradation rate
a and task set utilization UΓ. We use UUnifast algorithm [38]
to randomly generate 1000 task sets with utilizations ranging
from 0.1 to 1.0. Each task set contains 4 tasks with periods
ranging from 50 to 100. For the P 2-resource, we set its reju-
venation cost φ = 50. As aging progress is slow [37], hence,
we set a = 10−4 and a = 10−5 for the two experiments,
respectively, and set rejuvenation period π = 1000.

(a) UBEDF (b) UBRM

Fig. 6. Tightness of the utilization bounds with different UΓ and a values

As shown in the Fig. 6, with UΓ increasing from 0.1 to
1.0, the tightnesses of both UBEDF and UBRM share a similar
changing pattern. For example, in the case of a = 10−4

under EDF, before UΓ increases to 0.4, the tightness of UBEDF
stays at one, which means the schedulability determined by
the bound is the same as the schedulability determined by
EDF scheduling algorithm for all of the 1000 task sets. When
0.4 ≤ UΓ < 0.8, the tightness of UBEDF decreases first and
then increase to one again. When UΓ > 0.8, the tightness
again stays at one. One possible explanation of this pattern is
that when UΓ is low, the utilization bounds are relatively high,
hence most of the task sets are schedulable by both bound and
scheduling policy. On the contrary, when UΓ is sufficiently
high, most of the task sets are determined as un-schedulable
by both bound and scheduling policy. Therefore, in both cases,
the tightnesses are high. However, if UΓ is in a certain range,
such as [0.4, 0.8] for the case a = 0.4 under EDF policy,
schedulable task sets are more likely to be determined as un-
schedulable. Therefore, when UΓ is not sufficiently low or
high, the tightness is relatively low.

Another interesting observation is that, when a value in-
creases, both UBEDF and UBRM becomes tighter. In addition,
UBRM is tighter than UBEDF in the main trend.

Next, we evaluate the tightnesses of the both bounds with
different π values. We use the same configuration of task set
in the previous experiment but set UΓ = 0.5, set performance
degradation rate a = 10−5 and measure the tightnesses for
both UBEDF and UBRM with different π values ranging from
200 to 1500. As are depicted in Fig. 7, when π value increases,
the tightnesses of both UBEDF and UBRM decrease in general.

The theoretical analysis of the bound’s tightness is beyond
the scope of this paper, we will continue analyzing the
phenomenons illustrated above in our futhre work.

B. Impacts of π and a values on the utilization bounds

As aforementioned, UBEDF and UBRM are determined by
multiple factors. The impact of a factor can be evaluated by
calculating the first derivative of of the factor in UBEDF and
UBRM formula. However, for factor a and π, the calculation
of their first derivatives are complicated, hence we evaluate
their impacts on both bounds by simulations instead.

We set φ = 50, Pmin = 100, n = 4 and calculate UBEDF
and UBRM under different π and a values. As shown in Fig. 8,



(a) UBEDF (b) UBRM

Fig. 7. Tightness of the utilization bounds with different π values

(a) UBEDF (b) UBRM

Fig. 8. Impact of a and π

both bounds decrease when a increases, which matches the
intuition that resource with faster performance degradation can
only support task sets with lower utilizations.

In addition, as π increases, both utilization bounds show
the pattern of growing up first, reaching its maximum and
then decreasing. This observation rises a question that under
what π value, the utilization bound reaches its maximum.
For a P 2-resource, changing the performance degradation rate
or rejuvenation cost is difficult, if not impossible, since they
are determined by the software and hardware infrastructure.
However, the rejuvenation period is configurable. Therefore,
how to determine the rejuvenation period π is critical to the
performance of a P 2-resource in a real-time system. Our future
research will focus on how to determine the rejuvenation pe-
riod to maximize the utilization bound for a P 2-resource under
both EDF and RM policies.

VIII. CONCLUSION

In this paper, we have three major contributions: 1) Defined
the P 2-resource model and provided its supply bound analysis;
2) provided the closed form of the utilization bounds for a
task set on a P 2-resource under both EDF and RM scheduling
policies, respectively; and 3) studied the tightnesses of the two
utilization bounds and the impacts of different factors on the
two bounds as well by simulations.

In order to simplify the study, we assume the performance
degradation function of a P 2-resource is linear, which is
not always held in the real world systems. In our future
works, we will remove this assumption and study the P 2-
resources with non-linear performance degradation functions.

Meanwhile, as we mentioned before, we will theoretically
analyze the tightnesses of both bounds. We will also focus on
the research issue of finding the optimal rejuvenation period
for a P 2-resource to maximize its utilization bounds under
EDF and RM policies, respectively.

REFERENCES

[1] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming
in a hard-real-time environment, Journal of the ACM (JACM) 20 (1)
(1973) 46–61.

[2] Z. Kunpeng, S. Zhiyi, The measurement and data acquisition system for
the aging test of the composite insulators, in: Power System Technology,
2002. Proceedings. PowerCon 2002. International Conference on, Vol. 3,
IEEE, 2002, pp. 1863–1866.

[3] X. Hua, H. Wu, S. Ren, Enhancing throughput of hadoop distributed
file system for interaction-intensive tasks, in: Proceedings of the 2014
22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, IEEE Computer Society, 2014, pp. 508–511.

[4] A. Norman, The nova data acquisition system, Fermilab, 2012.
URL http://www-nova.fnal.gov/index.html,https://indico.cern.ch/event/
149557/session/2/contribution/529/material/slides/1.pdf

[5] X. Hua, H. Wu, Z. Li, S. Ren, Enhancing throughput of the hadoop
distributed file system for interaction-intensive tasks, Journal of Parallel
and Distributed Computing 74 (8) (2014) 2770–2779.

[6] A. Tai, L. Alkalai, On-board maintenance for long-life systems,
in: Application-Specific Software Engineering Technology, 1998.
ASSET-98. Proceedings. 1998 IEEE Workshop on, 1998, pp. 69–74.
doi:10.1109/ASSET.1998.688236.

[7] K. Tomsovic, D. E. Bakken, V. Venkatasubramanian, A. Bose, Designing
the next generation of real-time control, communication, and computa-
tions for large power systems, Proceedings of the IEEE 93 (5) (2005)
965–979.

[8] J. Davidson, F.-C. Bouchart, Adjusting nodal demands in scada con-
strained real-time water distribution network models, Journal of Hy-
draulic Engineering 132 (1) (2006) 102–110.

[9] S. A. Boyer, SCADA: supervisory control and data acquisition, Interna-
tional Society of Automation, 2009.

[10] Y. Huang, C. Kintala, N. Kolettis, N. D. Fulton, Software rejuvenation:
Analysis, module and applications, in: Fault-Tolerant Computing, 1995.
FTCS-25. Digest of Papers., Twenty-Fifth International Symposium on,
IEEE, 1995, pp. 381–390.

[11] K. S. Trivedi, K. Vaidyanathan, K. Goseva-Popstojanova, Modeling and
analysis of software aging and rejuvenation, in: Simulation Symposium,
2000.(SS 2000) Proceedings. 33rd Annual, IEEE, 2000, pp. 270–279.

[12] M. Fan, G. Quan, Harmonic semi-partitioned scheduling for fixed-
priority real-time tasks on multi-core platform, in: Proceedings of the
Conference on Design, Automation and Test in Europe, EDA Consor-
tium, 2012, pp. 503–508.

[13] L. Niu, G. Quan, A hybrid static/dynamic dvs scheduling for real-
time systems with (m, k)-guarantee, in: Real-Time Systems Symposium,
2005. RTSS 2005. 26th IEEE International, IEEE, 2005, pp. 10–pp.

[14] E. Bini, G. Buttazzo, A hyperbolic bound for the rate monotonic
algorithm, in: Real-Time Systems, 13th Euromicro Conference on,
2001., IEEE, 2001, pp. 59–66.

[15] G. C. Buttazzo, Rate monotonic vs. edf: judgment day, Real-Time
Systems 29 (1) (2005) 5–26.

[16] J. M. López, M. Garcı́a, J. L. Diaz, D. F. Garcia, Worst-case utilization
bound for edf scheduling on real-time multiprocessor systems, in: Real-
Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference
on, IEEE, 2000, pp. 25–33.

[17] J. M. López, J. L. Dı́az, D. F. Garcı́a, Utilization bounds for edf
scheduling on real-time multiprocessor systems, Real-Time Systems
28 (1) (2004) 39–68.

[18] X. Hua, Z. Li, H. Wu, S. Ren, Scheduling periodic tasks on multiple
periodic resources, in: INFOCOMP 2014, The Fourth International
Conference on Advanced Communications and Computation, 2014, pp.
35–40.

[19] S. K. Baruah, L. E. Rosier, R. R. Howell, Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor, Real-Time Systems 2 (4) (1990) 301–324.



[20] K. Jeffay, D. F. Stanat, C. U. Martel, On non-preemptive scheduling
of period and sporadic tasks, in: Real-Time Systems Symposium, 1991.
Proceedings., Twelfth, IEEE, 1991, pp. 129–139.

[21] J. Y. Leung, Handbook of scheduling: algorithms, models, and perfor-
mance analysis, CRC Press, 2004.

[22] S. Saha, B. Ravindran, An experimental evaluation of real-time dvfs
scheduling algorithms, in: Proceedings of the 5th Annual International
Systems and Storage Conference, ACM, 2012, p. 7.

[23] G. Von Laszewski, L. Wang, A. J. Younge, X. He, Power-aware
scheduling of virtual machines in dvfs-enabled clusters, in: Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE International
Conference on, IEEE, 2009, pp. 1–10.

[24] S. Eyerman, L. Eeckhout, Fine-grained dvfs using on-chip regulators,
ACM Transactions on Architecture and Code Optimization (TACO) 8 (1)
(2011) 1.

[25] T. D. Burd, T. A. Pering, A. J. Stratakos, R. W. Brodersen, A dynamic
voltage scaled microprocessor system, Solid-State Circuits, IEEE Journal
of 35 (11) (2000) 1571–1580.

[26] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, M. L. Scott, Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling, in:
High-Performance Computer Architecture, 2002. Proceedings. Eighth
International Symposium on, IEEE, 2002, pp. 29–40.

[27] A. B. Nagarajan, F. Mueller, C. Engelmann, S. L. Scott, Proactive fault
tolerance for hpc with xen virtualization, in: Proceedings of the 21st
annual international conference on Supercomputing, ACM, 2007, pp.
23–32.

[28] D. L. Parnas, Software aging, in: Proceedings of the 16th international
conference on Software engineering, IEEE Computer Society Press,
1994, pp. 279–287.

[29] K. Vaidyanathan, K. S. Trivedi, A comprehensive model for software
rejuvenation, Dependable and Secure Computing, IEEE Transactions on
2 (2) (2005) 124–137.

[30] S. Shirero, M. Takashi, H. Kei, On the schedulability conditions on
partial time slots, in: Real-Time Computing Systems and Applications,
1999. RTCSA’99. Sixth International Conference on, IEEE, 1999, pp.
166–173.

[31] A. K. Mok, X. Feng, D. Chen, Resource partition for real-time sys-
tems, in: Real-Time Technology and Applications Symposium, 2001.
Proceedings. Seventh IEEE, IEEE, 2001, pp. 75–84.

[32] X. Feng, Design of real-time virtual resource architecture for large-scale
embedded systems.

[33] A. Easwaran, M. Anand, I. Lee, Compositional analysis framework using
edp resource models, in: Real-Time Systems Symposium, 2007. RTSS
2007. 28th IEEE International, IEEE, 2007, pp. 129–138.

[34] I. Shin, I. Lee, Compositional real-time scheduling framework with
periodic model, ACM Transactions on Embedded Computing Systems
(TECS) 7 (3) (2008) 30.

[35] N. Fisher, F. Dewan, A bandwidth allocation scheme for compositional
real-time systems with periodic resources, Real-Time Systems 48 (3)
(2012) 223–263.

[36] J. Kim, K. Lakshmanan, R. R. Rajkumar, Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems, in:
Proceedings of the 2012 IEEE/ACM Third International Conference on
Cyber-Physical Systems, IEEE Computer Society, 2012, pp. 55–64.

[37] L. I. Millett, M. Thomas, D. Jackson, et al., Software for Dependable
Systems:: Sufficient Evidence?, National Academies Press, 2007.

[38] E. Bini, G. C. Buttazzo, Biasing effects in schedulability measures, in:
Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro

Conference on, IEEE, 2004, pp. 196–203.


