
Pattern-Based Statechart Modeling Approach for
Medical Best Practice Guidelines - A Case Study

Chunhui Guo, Zhicheng Fu, Shangping Ren
Department of Computer Science

Illinois Institute of Technology
Chicago, IL 60616, USA

{cguo13,zfu11}@hawk.iit.edu, ren@iit.edu

Yu Jiang
School of Software
Tsinghua University

Beijing, China
jy1989@mail.tsinghua.edu.cn

Maryam Rahmaniheris, Lui Sha
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{rahmani1, lrs}@illinois.edu

Abstract—Improving effectiveness and safety of patient care is
an ultimate objective for medical cyber-physical systems. Many
medical best practice guidelines exist in the format of hospital
handbooks which are often lengthy and difficult for medical staff
to remember and apply clinically. Statechart is an effective tool
to model medical guidelines and enables clinical validation with
medical staffs. However, some advanced statechart elements could
result in high cost, such as low understandability, high diffi-
culty in clinical validation, formal verification, and failure trace
back. The paper presents a pattern-based statechart modeling
approach for medical best practice guidelines, i.e., model medical
guidelines with only basic statechart elements and model patterns
built upon these basic elements. We use a simplified cardiac arrest
scenario provided to our team by Carle Foundation Hospital as
a case study to validate the proposed pattern-based approach.

I. INTRODUCTION AND RELATED WORK

Medical best practice guidelines play an important role in
medical care. Over the past decade, many text-based best
practice guidelines have been represented and encoded into
computer interpretable formats, such as Asbru [1], GLIF [2],
and PROforma [3]. Most of the encodings are similar to the
format of executable pseudo code which requires medical
staffs to have some computer coding knowledge to understand.
Furthermore, those formats are not visual nor user friendly
for physicians to validate their correctness, especially for
complicated clinical problems.

In most of today’s hospital handbooks, flowcharts are often
used to represent medical best practice guidelines [4]. These
flowcharts and many medical disease and treatment models
are very similar to statecharts [5], [6]. In addition to the
high similarities between medical models and statecharts,
statecharts are executable and can be indirectly verified, and
hence have become a widely used model in designing complex
systems, such as avionics [7], air traffic control systems [8],
and medical systems [9]. These distinguishing features of
statechart inspire us to use it as a computerized representation
for medical best practice guidelines.

Since the concept of statecharts was proposed by Harel [5],
many variants of statecharts have been proposed, such as UML
Statecharts [10], STATEMATE [11], Safe State Machine [12],
Stateflow [13], and Yakindu Statecharts [14], to name a few.
Yakindu statecharts tool is an open-source tool kit based on
the concept of statechart. It has a well-designed user interface,

provides simulation and code generation functionalities which
enable rapid prototyping and validation with domain experts.

Both the statecharts definition [5] and most of the state-
charts variants contain primitive elements, such as states and
transitions, and advanced elements, such as composite states.
These advanced elements are useful to model medical guide-
lines. For instance, the cardiac arrest guideline involves both
cardiovascular organ system and kidney organ system [15]. We
could use a composite state to model the organs in the cardiac
arrest guideline, where the composite state contains two sub-
statecharts which represent the cardiovascular organ and the
kidney organ, respectively. However, the use of advanced
elements often result in high cost, as it requires medical
personals to understand both syntax and execution semantics
of the advanced elements, and can be a challenge for them
who only have limited computer science knowledge. From
computer professionals’ perspective, the advanced elements
introduce unnecessary difficulty of formal verification and
tracing back unsatisfied properties in model debugging.

One key to achieving system safety at reasonable cost is
a serious and sustained commitment to simplicity, including
simplicity of critical functions and simplicity in system in-
teractions [16]. This commitment is often the mark of true
expertise. Advances in technology or development methods
will not make simplicity redundant; on the contrary, they will
give it greater leverage [17]. Reduce the difficulty of formal
verification correctness is a key to succeed in safety critical
systems. For example, it is a standard practice in aviation
to forbid complex C++ constructs and to forbid the use of
dynamic priority and dynamic memory allocation, as they
make certification difficult [18]. Similar philosophy is taken
in modern programing language design, where some advanced
language constructs are removed to improve safety and reduce
complexity. For instance, Java removes pointers and C/C++
avoids use of GOTO statement since 1960s.

To improve safety of medical cyber-physical systems and
reduce the difficulty in both clinical validation and formal
verification of medical guideline statechart models, the paper
presents a pattern-based statechart modeling approach for
medical best practice guidelines, i.e., model medical guidelines
with only basic statechart elements and model patterns built
upon these basic elements. The main contributions of the paper

are:
• We propose a pattern-based statechart modeling approach

for medical best practice guidelines;
• We validate the developed approach through a simplified

cardiac arrest scenario provided by Carle Foundation
Hospital.

II. MEDICAL GUIDELINE MODELING WITH YAKINDU
STATECHARTS

A. Cardiac Arrest Scenario

Cardiac arrest is the abrupt loss of heart function and can
lead to death within minutes. In a cardiac arrest scenario [6],
medical staff intend to activate a defibrillator to deliver a thera-
peutic level of electrical shock that can correct certain types of
deadly irregular heart-beats such as ventricular fibrillation. The
medical staff need to check two preconditions: (1) patient’s
airway and breathing are under control and (2) the EKG (elec-
trocardiogram) monitor shows a shockable rhythm. Suppose
the patient’s airway is open and breathing is under control,
but the EKG monitor shows a non-shockable rhythm. In order
to induce a shockable rhythm, a drug, called epinephrine
(EPI), is commonly given to increase cardiac output. Giving
epinephrine, however, also has two preconditions: (1) patient’s
blood pH value should be larger than 7.4 and (2) urine flow
rate should be greater than 12 mL/s. In order to correct these
two preconditions, sodium bicarbonate should be given to raise
blood pH value, and intravenous (IV) fluid should be increased
to improve urine flow rate. Fig. 1 shows a simplified cardiac
arrest treatment workflow.

Fig. 1. Simplified Cardiac Arrest Treatment Workflow

There are two medical properties needed to be verified
in the simplified cardiac arrest treatment workflow: (1) P1:
Defibrillator is activated only if the EKG rhythm is shockable
and airway and breathing is normal; and (2) P2: Epinephrine
is injected only if the blood pH value is larger than 7.4 and
urine flow rate is higher than 12 mL/s.

B. Simplified Cardiac Arrest Models with Yakindu Statecharts

In our previous work, Wu et al. developed a validation
protocol to enforce the correct execution sequence of perform-
ing treatment, regarding preconditions validation, side effects
monitoring, and expected responses checking based on the
pathophysiological models [6]. In this paper, we use Yakindu
statecharts to model the simplified cardiac arrest treatment
procedure with the validation protocol. The model consists of
two statecharts: Treatment and Pump. The Treatment statechart
implements the validation protocol and treatment procedure.

The Pump statechart models infusion pumps [21] to inject
epinephrine (EPI), sodium bicarbonate, and intravenous (IV)
fluid. The simplified cardiac arrest statechart model is shown
in Fig. 2. The simulation results through Yakindu show that
both medical properties, i.e., P1 and P2, are satisfied.

Fig. 2. Simplified Cardiac Arrest Yakindu Model

We use the Y2U1 tool [9] to transform the simplified
cardiac arrest Yakindu model given in Fig. 2 to UPPAAL
timed automata to verify the two medical properties P1 and
P2. The transformed simplified cardiac arrest UPPAAL model
is shown in Fig. 3. The two medical properties P1 and P2 can
be checked in UPPAAL by following two formulas: (1) P1:
A[]Treatment.ActivateDefibrillaotr implyRhythm ==
1 and (2) P2: A[]Treatment.InjectEPI imply BloodPHint
>= 7 && BloodPHfrac > 4 && UrineFlowint > 12.
The verification results also show that both P1 and P2 are
satisfied.

C. Case Analysis

Safety is critical to medical cyber-physical systems. To
improve safety of medical guideline systems, both clinical
validation from medical professionals and formal verification
are required. Our previous work [9] proposed an approach
to transform medical best practice guidelines to verifiable
statechart models and to support both clinical validation in
collaboration with medical professionals and formal verifi-
cation. In particular, the approach uses Yakindu statecharts
to model best practice guidelines and use the statechart to
interact with doctors for validating the model correctness.

1The Y2U tool is available at www.cs.iit.edu/∼code/software/Y2U.

www.cs.iit.edu/~code/software/Y2U

Fig. 3. Simplified Cardiac Arrest UPPAAL Model

The Yakindu statecharts are then automatically transformed
UPPAAL timed automata by the presented Y2U tool, so
that the model can be formally verified for required safety
properties. The approach also provides the ability to trace back
to the paths in the Yakindu statecharts when a specific property
in its associated UPPAAL timed automata fails. However, our
previous work does not address medical guideline modeling
issues with statecharts. How to model medical guidelines
with statecharts can influence the difficulty of both clinical
validation and formal verification. We take the simplified
cardiac arrest models in Section II-B as an example to explain
the influence of modeling approaches as follows.

Clinical validation requires medical professionals to un-
derstand medical guideline statechart models. The modeling
approaches can influence understandability of statechart mod-
els, hence can affect difficulty of clinical validation. In the
simplified cardiac arrest statechart model shown in Fig. 2,
the Treatment statechart is similar to the simplified cardiac
arrest treatment workflow shown in Fig. 1 and only uses basic
statechart elements states and transitions. Hence, medical
professionals can easily understand and validate the Treat-
ment statechart. However, Pump statechart uses an advanced
statechart element composite state to model infusion pumps
which can inject multiple medicine fluid. As shown in Fig. 1,
the composite state named On contains three sub-statecharts:
EPI, SodiumBicarbonate, and IV. To understand and validate
the Pump statechart, medical professionals are required to
fully understand the execution semantics of composite states:
(1) the interaction mechanism between the entire statechart
model and sub-statecharts in a composite state, (2) when
to activate/deactivate sub-statecharts, (3) the execution orders

of main statecharts and sub-statecharts, (4) the interaction
mechanism among different sub-statecharts, etc. Hence, the
Pump statechart is more difficult to understand and validate for
medical professionals than the Treatment statechart. One main
reason is that the Pump statechart uses advanced statechart
elements which require more computer science knowledge to
understand. Noting, a physician from Carle Foundation Hos-
pital mentioned that even the horizontal graph organization of
statechart elements can increase the difficulty of understanding
medical guideline statechart models, as medical workflows are
usually vertical in medical guideline handbooks.

In our approach presented in [9], the medical guideline
modeling approaches with statecharts can influence the time
complexities of transformation from Yakindu statecharts to
UPPAAL timed automata and tracing back failures. By com-
paring the simplified cardiac arrest Yakindu model shown in
Fig. 2 with the transformed UPPAAL model shown in Fig. 3,
all elements of the Treatment statechart in two models have
one-to-one mapping. Hence, for the Treatment statechart, the
time complexities of transformation and tracing back failures
are both O(n). As UPPAAL timed automata does not support
composite states, the transformation of the Pump statechart
is required to flatten the composite state On. We proposed
a transformation rule to flatten composite states in [9]. Ac-
cording to the transformation rule, the time complexities of
transformation and tracing back failures of the Pump statechart
are both O(n2). Therefore, the composite state element can
exponentially increase the time complexities of transformation
and tracing back failures.

III. PATTERN-BASED MEDICAL GUIDELINE MODELING

A. Pattern-Based Statechart Modeling Approach

As mentioned before, statecharts can be used as an effective
tool to model medical best practice guidelines. Both the
statecharts definition [5] and most of the statecharts variants
contain basic elements, such as states and transitions, and
advanced elements, such as composite states. However, as
discussed in Section II-C, some advanced statechart elements
could result in high cost, such as low understandability, high
difficulty in clinical validation, formal verification, and failure
trace back. To overcome these disadvantages of advanced
statechart elements, we intend to model medical guidelines
with only basic statechart elements.

To fulfill the above intention, we still need to implement
advanced statechart elements. In different statecharts variants,
there are two approaches to implement advanced elements:
(1) represent advanced elements by basic elements, such as
Esterel [19]; or (2) implement the advanced elements by code
directly, such as Yakindu statecharts [14]. Although the first
approach uses basic elements to represent advanced elements,
the translate process from advanced elements to basic elements
is hidden for model developers. While the second approach
hides all the implementation details. However, the visibility
of implementation details is critical for validating the safety
of medical cyber-physical systems. Hence, we propose an
approach to make the translation process of advanced elements

visible to medical professionals through explicitly designed
model patterns. The visibility provides a friendly interface
between medical staffs and computer professionals, hence
reduces system failure rate due to hidden implementation rules.

In summary, our pattern-based statechart modeling approach
uses only basic statechart elements and model patterns built
upon these basic elements to model medical best practice
guidelines. The pattern-based approach not only increases
statechart models’ understandability for medical professionals,
but also reduces the difficulty in clinical validation, formal
verification, and failure trace back.

B. Model Patterns

For Yakindu statecharts, we implement three model patterns:
composite state, state action, and choice.

1) Composite State:
For a composite state, we use a model pattern to flat the

hierarchical structure and represent it with basic elements.
In particular, we separate the sub-statechart contained in the
composited state from the main statechart containing the
composite state, and implement the interactions between the
sub-statechart and the main statechart through events between
them. If a statechart model contains nested composite states,
we flat it recursively starting from the out most composite
state.

In the composite state model pattern, a composite state
is represented by a simple state. To maintain the interac-
tion between the main statechart and sub-statechart in a
composite state, we declare two events: activateSub for
activating/entering the composite state and deactivateSub

for deactivating/exiting sub-statechart in the composite state.
In the main statechart, we raise two events activateSub

and deactivateSub for incoming and outgoing transitions
of the composite state, respectively. The sub-statecharts in a
composite state are hence separated from the main statechart.
The sub-statecharts’ execution priorities are set one level lower
than the main statechart. For the sub-statechart, we add an
initial state SS0 as the successor of the sub-statechart’s entry
node and add a transition from SS0 to the original first state
of the sub-statechart with guard [activateSub] to accept the
sub-statechart’s activation from the main statechart. For each
states in the sub-statechart except SS0, we add an outgoing
transition, which has the highest priority among all outgoing
transitions, to state SS0 with guard [deactivateSub]. All
transitions of the sub-statechart have lower priorities than
each outgoing transition of the composite state, hence allows
the main statechart be able to interrupt the sub-statechart’s
execution at any time.

Fig. 4 shows an example of the composite state model
pattern. In Fig. 4, the sub-statechart is activated/deactivated
when the main statechart enters/exists state S2. The activa-
tion/deactivation of the sub-statechart is implemented by event
activateSub/deactivateSub. Both state SS1 and state SS2

has a highest priority outgoing transition to added state SS0.
Algorithm 1 depicts the implementation of the composite state
model pattern.

(a) Statechart Model with Composite State

(b) Statechart Model with Pattern

Fig. 4. Composite State Model Pattern

Algorithm 1 COMPOSITE STATE PATTERN

Input: A composite state S with incoming transitions
T I = {T I

1 , T
I
2 , . . . , T

I
m} and outgoing transitions T O =

{TO
1 , TO

2 , . . . , TO
n }, the sub-statechart Sub in S

1: Declare two events activateSub and deactivateSub

2: Separate the sub-statechart Sub from composite state S

3: Replace S with a simple state
4: for each incoming transition T I

i in T I do
5: Add the action raise activateSub
6: end for
7: for each outgoing transition TO

j in T O do
8: Add the action raise deactivateSub
9: end for

10: Add state SS0 as the successor of Sub’s entry node
11: Add a transition from SS0 to original first state of Sub

with guard [activateSub]
12: for each state in Sub except SS0 do
13: Add a highest priority outgoing transition to state SS0

with guard [deactivateSub]
14: end for

2) State Action:
In Yakindu statecharts, the actions can be associated with

both transitions and states. We use the state action model
pattern to represent state actions by transition actions which
are selected as basic elements.

Yakindu statecharts have two types of state actions: en-
try/exit actions and timer actions. The entry/exit actions are
carried out on entering or exiting a state. In the state action
model pattern, entry/exit actions are combined into actions on
all incoming/outgoing transitions of the corresponding state.
For each timer action of a state, we add a self-loop transition
with lowest priority for the state and represent the timer action
by an action on the added self-loop transition.

Fig. 5 shows an example of the state action model pattern.
For instance, the state S2 in Fig. 5(a) has a timer action

every 1s/x = x+ 1 which means if S2 is active, x will be
increased by 1 for every second. With the state action model
pattern, we add a lowest priority self-loop transition with guard
every 1s and action x = x+ 1 for S2, as shown in Fig. 5(b).
Algorithm 2 depicts the implementation of the state action
model pattern.

(a) Statechart Model with State Actions

(b) Statechart Model with Pattern

Fig. 5. State Action Model Pattern

Algorithm 2 STATE ACTION PATTERN

Input: A state S, S’s incoming transitions T I =
{T I

1 , T
I
2 , . . . , T

I
m} with actions AI = {AI

1, A
I
2, . . . , A

I
m},

S’s outgoing transitions T O = {TO
1 , TO

2 , . . . , TO
n } with

actions AO = {AO
1 , A

O
2 , . . . , A

IOn}, S’s entry ac-
tion Aen, S’s exit action Aex, S’s timer actions At =
{At

1, A
t
2, . . . , A

t
l}, and corresponding timer guards G t ==

{Gt
1, G

t
2, . . . , G

t
l},

1: for each incoming transition T I
i in T I do

2: AI
i = AI

i ;A
en

3: end for
4: for each outgoing transition TO

j in T O do
5: AO

j = Aex;AO
j

6: end for
7: for each timer action At

k in At do
8: Add a self-loop transition T loop with lowest priority for

state S
9: Gloop = Gt

k

10: Aloop = At
k

11: T loop = T loop ∪ T loop

12: end for

3) Choice:
In Yakindu statecharts, a choice node is a pseudo state which

can be used to model a conditional path [20]. It divides a
transition into multiple sections, each section can carry a guard
and an action.

To implement choice element, we design the choice model
pattern to represent a choice node with the basic elements.
The model pattern replaces the choice node and its incoming
and outgoing transitions with added transitions that directly
connect the choice node’s predecessor states with successor
states. Each added transition combines one incoming transition
and one outgoing transition of the corresponding choice node
using AND logic. Suppose a choice node has m incoming
transitions and n outgoing transitions, the choice model pattern

will add m ∗ n new transitions and delete m + n original
transitions.

Fig. 6 shows an example of the choice model pattern. For
instance, the transition from S1 to S2 ([x == 0&&y ==
0]/ x = 1; y = 1) is combined by the transition from S1 to
the choice node ([x == 0]/ x = 1) and the transition from
the choice node to S2 ([y == 0]/ y = 1) with AND logic.
Algorithm 3 depicts the implementation of the choice model
pattern.

(a) Statechart Model with Choice

(b) Statechart Model with Pattern

Fig. 6. Choice Model Pattern

Algorithm 3 CHOICE PATTERN

Input: A choice node C, C’s incoming transitions T I =
{T I

1 , T
I
2 , . . . , T

I
m} with guards GI = {GI

1, G
I
2, . . . , G

I
m}

and actions AI = {AI
1, A

I
2, . . . , A

I
m}, and C’s out-

going transitions T O = {TO
1 , TO

2 , . . . , TO
n } with

guards GO = {GO
1 , G

O
2 , . . . , G

O
n } and actions AO =

{AO
1 , A

O
2 , . . . , A

IOn}
Output: Combined transitions T = {T1, T2, . . . , Tm∗n} with

guards G = {G1, G2, . . . , Gm∗n} and actions A =
{A1, A2, . . . , Am∗n}

1: for each incoming transition T I
i in T I do

2: for each outgoing transition TO
j in T O do

3: Add a combined transition Tk from T I
i ’s source state

to TO
j ’s destination state

4: if GO
j = default then

5: Gk = GI
i && !GO

1 && . . . && !GO
j−1

&& !GO
j+1 && . . . && !GO

n

6: else
7: Gk = GI

i && GO
j

8: end if
9: Ak = AI

i ; AO
j

10: end for
11: end for
12: Delete the choice node C

13: Delete C’s incoming transitions T I and outgoing transi-
tions T O

14: return T

C. Simplified Cardiac Arrest Models with Model Patterns

We apply the composite state model pattern (Section III-B1)
to the Pump statechart in Fig. 2. The three sub-statecharts
in the composite state On of Pump statecharts are extracted
out. Hence, the modified infusion pump statechart model
contains four statecharts, as shown in Fig. 7. We run sim-
ulations on the modified simplified cardiac arrest statechart
model through Yakindu. The simulation results show that both
medical properties, i.e., P1 and P2, are still satisfied. We also
simulate the execution of the two statechart models under the
same environment. The simulation results show that the two
statechart models have the same execution behavior, i.e., they
are equivalent from execution behavior perspective.

Fig. 7. Infusion Pump Model with Model Patterns

We also use the Y2U tool to transform the modified state-
chart model to UPPAAL timed automata to verify P1 and P2.
The transformed simplified cardiac arrest UPPAAL model is
the same with the UPPAAL model in Fig. 3. The verification
results show that both P1 and P2 are still satisfied.

After applying the proposed composite state model pattern,
the modified infusion pump statechart model shown in Fig. 7
only contains basic statechart elements states and transitions.
Hence, it is more understandable for medical professionals
than the Pump statechart in Fig. 2. In addition, the modified
pump statechart model shown in Fig. 7 and its corresponding
transformed UPPAAL model shown in Fig. 3 have one-
to-one mapping elements. Hence, the time complexities of
transformation and tracing back failures are both decreased
from O(n2) to O(n).

The case study demonstrates: (1) the composite state model
pattern can improve understandability of medical guideline
statechart models for medical professionals; and (2) the com-
posite state model pattern can decrease the time complexities
of transformation and tracing back failures from exponential
time to linear time.

IV. CONCLUSION

The paper presents a pattern-based statechart modeling
approach for medical best practice guidelines, i.e., model
medical guidelines with only basic statechart elements and
model patterns built upon these basic elements. The proposed
pattern-based approach not only increases statechart models’
understandability for medical professionals, but also reduces
the difficulty in clinical validation, formal verification, and

failure trace back. We use a simplified cardiac arrest scenario
provided to our team by Carle Foundation Hospital as a
case study to validate the proposed pattern-based approach.
It is worth pointing out that although the presented approach
is designed for modeling medical guidelines, the approach
can also be applied in modeling other safety-critical systems
which require both validation with domain experts and formal
correctness verification.

ACKNOWLEDGMENT

The research is supported in part by NSF CNS 1545008
and NSF CNS 1545002.

REFERENCES

[1] Michael Balser, Christoph Duelli, and Wolfgang Reif. Formal semantics
of asbru an overview. Proc. of the 6th Biennial World Conference on
Integrated Design and Process Technology, 5(5):1–8, 2002.

[2] Vimla L Patel, Vanessa G Allen, José F Arocha, and Edward H
Shortliffe. Representing clinical guidelines in glif. Journal of the
American Medical Informatics Association, 5(5):467–483, 1998.

[3] John Fox, Nicky Johns, and Ali Rahmanzadeh. Disseminating medical
knowledge: the proforma approach. Artificial Intelligence in Medicine,
14(12):157 – 182, 1998. Selected Papers from AIME ’97.

[4] Mary Fran Hazinski, Michael Shuster, Michael W. Donnino, et al. 2015
american heart association guidelines update for cardiopulmonary resus-
citation and emergency cardiovascular care. Circulation, 132(18):S315–
S573, November 2015.

[5] D. Harel. Statecharts: A visual formalism for complex systems. Science
of computer programming, 8(3):231–274, 1987.

[6] Po-Liang Wu, D. Raguraman, Lui Sha, R.B. Berlin, and J.M. Gold-
man. A treatment validation protocol for cyber-physical-human medical
systems. In Software Engineering and Advanced Applications (SEAA),
2014 40th EUROMICRO Conference on, pages 183–190, Aug 2014.

[7] M. Romdhani, A. Jeffroy, P. de Chazelles, A. E. K. Sahraoui, and A. A.
Jerraya. Modeling and rapid prototyping of avionics using statemate. In
Rapid System Prototyping, 1995. Proceedings., Sixth IEEE International
Workshop on, pages 62–67, Jun 1995.

[8] Jon Whittle, Richard Kwan, and Jyoti Saboo. From scenarios to code:
An air traffic control case study. Software & Systems Modeling, 4(1):71–
93, 2005.

[9] Chunhui Guo, Shangping Ren, Yu Jiang, Po-Liang Wu, Lui Sha, and
Richard Berlin. Transforming medical best practice guidelines to
executable and verifiable statechart models. In 2016 ACM/IEEE 7th
International Conference on Cyber-Physical Systems (ICCPS), pages 1–
10, April 2016.

[10] Michael von der Beeck. Formalization of UML-Statecharts, pages 406–
421. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[11] David Harel and Amnon Naamad. The statemate semantics of state-
charts. ACM Trans. Softw. Eng. Methodol., 5(4):293–333, October 1996.

[12] Charles André. Semantics of s.s.m. (safe state machine). I3S Laboratory,
University of Nice-Sophia Antipolis / CNRS, 2003.

[13] Stateflow. http://www.mathworks.com/products/stateflow/.
[14] Yakindu statechart tools (sct). https://www.itemis.com/en/yakindu/

statechart-tools/.
[15] M. Rahmaniheris, P. Wu, L. Sha, and R. R. Berlin. An organ-centric best

practice assist system for acute care. In 2016 IEEE 29th International
Symposium on Computer-Based Medical Systems (CBMS), pages 100–
105, June 2016.

[16] Pascale Carayon. Handbook of Human Factors and Ergonomics in
Health Care and Patient Safety. CRC Press, 2011.

[17] Daniel Jackson, Martyn Thomas, and Lynette I Millett. Software for
Dependable Systems: Sufficient Evidence? National Academies Press,
2007.

[18] Leanna Rierson. Developing Safety-Critical Software: A Practical Guide
for Aviation Software and DO-178C Compliance. CRC Press, 2013.

[19] Grard Berry and Georges Gonthier. The esterel synchronous program-
ming language: design, semantics, implementation. Science of Computer
Programming, 19(2):87 – 152, 1992.

[20] Yakindu statechart tools documentation. https://www.itemis.com/en/
yakindu/statechart-tools/documentation/user-guide/.

http://www.mathworks.com/products/stateflow/
https://www.itemis.com/en/yakindu/statechart-tools/
https://www.itemis.com/en/yakindu/statechart-tools/
https://www.itemis.com/en/yakindu/statechart-tools/documentation/user-guide/
https://www.itemis.com/en/yakindu/statechart-tools/documentation/user-guide/

[21] Infusion pumps. http://www.fda.gov/MedicalDevices/
ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/
InfusionPumps/.

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/

	Introduction and Related Work
	Medical Guideline Modeling with Yakindu Statecharts
	Cardiac Arrest Scenario
	Simplified Cardiac Arrest Models with Yakindu Statecharts
	Case Analysis

	Pattern-Based Medical Guideline Modeling
	Pattern-Based Statechart Modeling Approach
	Model Patterns
	Composite State
	State Action
	Choice

	Simplified Cardiac Arrest Models with Model Patterns

	Conclusion
	References

