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Abstract—In this paper, we study the problem of scheduling
periodic tasks on multiple periodic resources. We take two step
approach by first integrating multiple periodic resources to an
equivalent single periodic resource so that existing real-time
scheduling theorems on single periodic resource can be applied.
Second, we extend the schedulability tests of periodic tasks on a
single periodic resource in continuous time domain given in [1]
to discrete and finite time domain so that the schedulability
tests can be applied in practice. We further empirically study
the performance of periodic resource integration. Experiment
results reveal the following interesting behaviors: 1) increasing
the number of periodic resources does not necessarily increase
the integrated resource’s capacity; 2) integrating smaller capacity
periodic resources has higher capacity increase than integrating
larger capacity periodic resources; and 3) integrating periodic
resources that have the same capacity results in the most capacity
increase in the integrated resource.

I. INTRODUCTION

In real-time community, for a long time, the focus of
scheduling problems has been on dedicated resources, the
resources that are constantly available to tasks. However,
as virtualization technology develops, resources, especially
virtual resources, are not dedicated resource any more. The
virtual resources are often modeled as periodic resources
which are only available for certain amount of time within
a given period [2], [3], [4], [5], [6].

The study of periodic resources can be traced back to the
time when the concept of time-division sharing is proposed.
Time-division sharing is one of the most important technology
and also one of the most efficient way to accommodate
multiple applications on a single resource [2], [7]. With time-
division sharing scheduling algorithms, such as round-robin
and server-based scheduling algorithms, resources manifested
to applications are periodic resources. The purpose of these
algorithms is to partition a dedicated resource to serve multiple
applications, rather than how to schedule a task on a periodic
resource. Research on the schedulability issue of multiple tasks
on a single periodic resource started in late 90 [2] and has
recently draw more attention in the community [1], [3], [4],
[8], [9], [10], [11]. However, until now, there has not been
much, if any, work in the literature dealing with the issue of
scheduling a periodic task set on multiple periodic resources
when none of the individual periodic resource has large enough
capacity to support the given task set.

In this paper, we study the problem of scheduling periodic
task set on multiple periodic resources. To address the issue,
we take two steps, first study how multiple periodic resources
can be integrated into an equivalent single periodic resource
so that the existing real-time scheduling theorems on a single
periodic resource can be applied. Second, we extend one of
the existing schedulability test for a single periodic resource
proposed by Lee [1] from continuous time domain to discrete
and finite time domain so that the test can be of practice use.
We further use extensive simulation to observe the resource
capacity increase patterns when periodic resources of different
capacities are integrated.

The rest of paper is organized as follows: Section II dis-
cusses the related work. Section III defines terms and models
that the paper is based on and also formulates the problem
to be addressed in the paper. The equivalent transformation
of multiple periodic resources into a single periodic resource
is discussed in Section IV. In Section V, we extend Lee’s
schedulability test [1] of multiple tasks on a single resource
from continuous time domain to discrete and finite time
domain. Section VI empirically studies the performance of
integrating periodic resources with different capacities. Finally,
we conclude in Section VII.

II. RELATED WORK

Real-time scheduling problem has been studied extensively
for half century. Most of the researches on the problem are
focusing on dedicated resources over past decades. As the
computer technology develops, single resource nowadays can
provide thousands of more computational capabilities com-
pared to decades ago. Hence, the real-time scheduling problem
is extended from how to schedule a group of tasks onto a
dedicated resource to how to schedule multiple groups of
tasks onto a dedicated resource. One of the most intuitive way
to schedule multiple groups of tasks onto a single dedicated
resource is to split the dedicated resource into several parti-
tions. Then schedule each group of tasks to its corresponding
partition. This is the essential concept of periodic resource [2].

Although the periodic resource model hasn’t been formally
defined until later 90s [2], the insight of periodic resource
can be traced back as early as the concept of time-division
sharing was proposed. Time-division is one of the most



efficient way to distribute resources to tasks [2], [7]. Server-
based scheduling mechanism is one of the most popular time-
division mechanisms to accommodate multiple groups of tasks
and provide some level of schedulability guarantees [12], and
extensive research work [13], [14], [15] developed different
mechanisms to improve tasks’ response time.

Server-based mechanisms can be treated as strategies to
adjust the resource partition to meet tasks’ specific demands.
Considering the resource partition is given and cannot be
adjusted, Shirero et al. [2] first defined periodic resources
and proposed a real-time round robin scheduling algorithm in
1999. They also introduced the concept of resource regularity.
Based on resource regularity, they proposed schedulability
bounds for periodic tasks. A.K. Mok et al. [3], [16] then
extended Shirero’s work and proposed a more comprehensive
schedulability analysis for periodic resources under earliest
deadline first (EDF) and rate monotonic (RM) scheduling al-
gorithms. However, both Shirero and Mok’s periodic resource
model had constraints that either the resource pattern or the
resource regularity should be given. By removing the con-
straints, Shin et al. then extended the periodic resource model
to a more general case and provided a complete schedulability
analysis under such model and gave the schedulability bounds
for both EDF and RM accordingly [1], [10].

However, both Shirero’s original periodic resource model
and Shin’s extended model were only trying to solve the real-
time scheduling problems on single periodic resource. Instead,
in this paper we investigate the problem of how to integrate
multiple periodic resources into an equivalent single periodic
resource so that the existing theorems for single periodic
resource can be applied.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. Terms and Definitions

Task Set Model Γ

A task set contains a set of periodic tasks, i.e., Γ =
{τ1, ..., τn} with τi = (pi, ei), where pi and ei are the task’s
period and worst case execution time, respectively.
Resource Model R

The resource we consider is a periodic resource, represented
as R = (π, θ), where π is a period and θ is the total amount
of available time durations (0 < θ < π) within each period.
Capacity of Resource C(R)

The capability of a periodic resource R(π, θ) is defined as
C(R) = θ

π .
Periodic Resource Pattern(PR)

Given a periodic resource R(π, θ), its pattern PR defines
its time availability within its period, i.e., PR(t) = 1 indicates
that the resource is available at time t, or it is not available at
time t if PR(t) = 0.
Fixed Pattern Periodic Resource

If a periodic resource is of fixed pattern, then PR(t) =
PR(t+ k × π), where k ∈ N+.
Continues Periodic Resource

Given fixed pattern periodic resource R = (π, θ), it is a
continues periodic resources if and only if ∀i ∈ [0, θ− 1], k ∈
N+, PR(i+ k × π) = 1.
Synchronized Periodic Resource

Two periodic resources are synchronized if the start points
of the two periods are the same.
Equivalent Single Resource Transformation of Periodic
Resource Set (I(Ψ))

For a set of periodic resource Ψ = {R1, R2, ..., Rn}, its
equivalent single periodic resource transformation is defined
as I(Ψ) with ∀t ∈ [0, LCM1≤i≤n(πi)], PI(Ψ)(t) = PR1(t) ∨
PR2(t) ∨ ... ∨ PRn(t).

B. Problem Formulation

Given a set of periodic resources Ψ = {R1, R2, ..., Rn}
with Ri = (πi, θi) and a set of periodic tasks Γ =
{τ1, τ2, ..., τm}, decide schedulability test if the task set is
schedulable on the resource set with EDF and RM, respec-
tively.

We take two steps to address the problem, first, transform
the periodic resource set into an equivalent single periodic re-
source (Section IV), and second apply extended single periodic
resource schedulability test (Section V) to decide whether the
given task set is schedulable on the given resources.

It is worth pointing out that the discrete time system is
assumed, i.e., ∀ipi, ei, πi, θi ∈ N. We also assume that tasks
can not be executed parallelly, i.e., at each time instance
t, tasks can only execute on one resource. Further more,
we assume there is no overhead for task migration between
different resources.

IV. INTEGRATION OF PERIODIC RESOURCES

Based on the definition of equivalent single periodic re-
source of a periodic resource set Ψ = {R1, R2, ..., Rn}, i.e.,
PI(Ψ) = PR1

(t) ∨ PR2
(t) ∨ ... ∨ PRn

(t), we can develop an
algorithm to calculate I(Ψ) as illustrated in Algorithm 1.

ALGORITHM 1: RES_INT(Ψ = {R1, R2, ..., Rn})
1 Calculate the hyperperiod of Ψ as λ =

∏n
i=1 πi

2 PI(Ψ)(t) = 0,∀t ∈ {0, 1, ..., λ− 1}
3 t = 0
4 while t < λ do
5 for i = 1 to n do
6 PI(Ψ)(t) = PI(Ψ)(t) ∨ PRi

(t)
7 end
8 t = t+ 1
9 end

10 return PI(Ψ)

With Algorithm 1, we can obtain the equivalent single
resource of a periodic resource set. However, Algorithm 1
needs to check whether each time unit is available or not
within the hyperperiod λ, which is time consuming. In the
following, we first give the upper and lower bound analysis
of the equivalent single periodic resource’s capacity, and



then propose closed-form formula to directly calculate the
equivalent single periodic resource if the periodic resources
satisfy certain conditions.

Lemma 1: Given a set of periodic resources Ψ =
{R1, R2, ..., Rn}, then the capacity of its equivalent single pe-
riodic resource, i.e., C(I(Ψ)), satisfies the following condition

max{C(Ri), 1 ≤ i ≤ n} ≤ C(I(Ψ)) ≤ min{1,
n∑
i=1

C(Ri)}

�
Proof: By definition, PI(Ψ)(t) = PR1

(t) ∨ PR2
(t) ∨ ... ∨

PRn
(t), hence, we have PI(Ψ)(t) ≥ max{PRi

(t), 1 ≤ i ≤ n},
therefore, max{C(Ri), 1 ≤ i ≤ n} ≤ C(I(Ψ)).

If the available time slots of each periodic resource are not
overlapped with each other, then the capacity C(I(Ψ)) is the
sum of each individual periodic resource, i.e., C(I(Ψ)) =∑n
i=1 C(Ri). However, if the available time slots of any

two periodic resources are overlapped, then C(I(Ψ)) <∑n
i=1 C(Ri). In addition, the resource capacity cannot exceed

1, so we have C(I(Ψ)) ≤ min(1,
∑n
i=1 C(Ri)).

It is worth pointing out that both the upper and lower
bounds are tight bounds. For instance, with R1(3, 2) and
R2(3, 1) with PR1

(0) = PR1
(1) = 1, PR1

(2) = 0 and
PR2(0) = 0, PR2(1) = PR2(2) = 1. Then for the equivalent
single resource I(R1, R2), C(I(R1, R2)) = C(R1). Similarly,
with R1(3, 2) and R2(3, 1) and PR1

(0) = PR1
(1) = 1,

PR1
(2) = 0 and PR2

(0) = PR2
(1) = 0, PR2

(2) = 1.
Then for the equivalent single resource I(R1, R2), we have
C(I(R2, R2)) = C(R1) + C(R2).

When the periods of periodic resources are mutually prime,
we can derive the following Lemmas to simplify the calcula-
tion of periodic resource integration.

We first consider a simple case where one of the periodic
resource has only 1 time slot available in each period.

Lemma 2: Given two fixed pattern periodic resource R1 =
(π1, θ1) and R2 = (π2, 1). If π1 and π2 are mutually prime,
then I(R1, R2) = (π′, θ′), where π′ = π1 · π2 and θ′ = π2 ·
θ1 + π1 − θ1.

Proof: Suppose the pattern of R2 is PR2(k + i · π2) = 1
where i is the number of period. That is, the kth slot of every
period π2 is available. We first assume the following condition
hold and will prove it later:
• if i1 6= i2 ∧ i1, i2 ∈ {0, 1, ..., π1 − 1}, then

((k + i1 · π2)mod π1) 6= ((k + i2 · π2)mod π1)

The condition indicates that ∀k ∈ {0, 1, ..., π1 − 1}, the kth
time slot of resource R1’s period π1 is overlapped with the
available time slot of R2 once within their hyperperiod π1 ·π2.

As within the hyperperiod π1 ·π2, π2 ·θ1 available time slots
are provided by R1, π1 · 1 available time slots are provided
by R2, while θ1 time units are overlapped, hence, we have
θ′ = θ1 · π2 + π1 · 1− θ1 · 1.

Now we prove that the above assumption holds.
Suppose that:

∃i1, i2 : (k + i1 · π2)mod π1) = ((k + i2 · π2)mod π1)

then we have:

(k + i1 · π2)mod π1 − (k + i2 · π2)mod π1 = 0

which implies

(k + i1 · π2 − (k + i2 · π2)) mod π1 = 0

hence, we have (i1 − i2)π2 mod π1 = 0.
Since i1 6= i2 and i1, i2 ∈ {0, 1, ..., π1 − 1}, then π1 and

π2 are not mutually prime, which contradicts our assumption
that π1 and π2 are mutually prime. Therefore, our assumption
holds.

Lemma 2 gives the formulation to calculate the integration
of two periodic resources when one of them only has one
time slot available within each period, next, we remove this
assumption and generalize the analysis to the integration of
two fixed pattern periodic resources with arbitrary capacities.

Lemma 3: Given two fixed pattern periodic resources
R1(π1, θ1) and R2(π2, θ2), if π1 and π2 are mutually prime,
then I(R1, R2) = (π′, θ′) where π′ = π1 · π2 and θ′ =
θ1 · π2 + θ2 · π1 − θ1 · θ2.

Proof: According to Lemma 2, if R2 has only one time
slot available with each period, then R1 and R2 have θ1

available time slots are overlapped within each hyperperiod
π1 · π2. Then if R2 has θ2 available time slots within each
period, applying the similar proof of Lemma 2, we have θ1 ·θ2

available time slots are overlapped within each hyperperiod
π1 · π2. Since the total available time slots of R1 and R2 are
θ1 ·π2 + θ2 ·π1, hence, we have θ′ = θ1 ·π2 + θ2 ·π1− θ1 · θ2.

Lemma 3 integrates two periodic resource, the following
lemma generalize the calculation to multiple resources.

Lemma 4: Given a periodic resource set {R1, R2, ..., Rn}
with Ri = (πi, θi), if all the periods of the periodic re-
sources in this set are mutually prime with each other, then
I(R1, R2, ..., Rn) = (π′n, θ

′
n), where

θ′n =

{
θ1 · π2 + θ2 · π1 − θ1 · θ2 if n = 2

θ′n−1 · πn + θn · π′n−1 − θn · θ′n−1 if n > 2

where π′n =
∏n
i=1 πi.

Proof: With Lemma 3, we can obtain the equivalent single
periodic resource of R1 and R2, i.e., I(R1, R2) = (π1 ·π2, θ1 ·
π2 + θ2 · π1 − θ1 · θ2). By treating I(R1, R2) as a single
resource, applying Lemma 3 to integrate resource R3, we have
I(R1, R2, R3) = (

∏3
i=1, θ

′
2 ·π3 + θn ·π′2− θ3 · θ′2). Follow the

procedures, repeating the above steps until the resource Rn
finishes the proof.

The previous lemmas have a constraint that resource periods
are mutually prime. We now remove the constraint and discuss
a general case for integrating two synchronized and continues
periodic resources.

Lemma 5: Given two synchronized and continues periodic
resource R1(π1, θ1) and R2(π2, θ2). Without loss of generali-
ty, we assume π1 ≥ π2 and their hyperperiod be π′. Let taili =
(i + 1)π1modπ2, i ∈ [0, π′/π1 − 1] and ki = bπ1−θ1−taili

π2
c,

then integrated resource capacity within a hyperperiod is:



θ′ =

π′/pi1∑
i=1

θ1

+ max{min{θ2, taili} −max{θ1 − (π1 − taili), 0}, 0}
+ max{kiθ2 + max{0, π1 − taili − (ki + 1) + θ2 − θ1}, 0}

(1)

Due to page limit, the proof of the lemma is given in
Appendix.

V. SCHEDULABILITY ANALYSIS ON SINGLE PERIODIC
RESOURCE

For self-containment, we first introduce the existing work
about schedulability test on single periodic resource given
in [1].

A. Existing Schedulability Tests on Single Periodic Resource

Given a periodic resource R, the resource supply bound
function sbfR(t) represents the minimum available time that
resource R can guarantee to supply within any time interval
of length t. It can be calculated as below [17]:

sbfR(t) ={
t− (k + 1)(π − θ) ift ∈ [(k + 1)π − 2θ, (k + 1)π − θ]
(k − 1)π otherwise

(2)

where k = max(d(t− (π − θ))/πe, 1).
In order to meet timing constraints of task set Γ, a demand

bound functions dbfEDF(Γ, t, τi) and dbfRM(Γ, t) under EDF
and RM scheduling policies, respectively, represents the max-
imum possible resource demand that τi(τi ∈ Γ) may required
within time interval of length t in order to meet the timing
constraint. They can be calculated as below [17]:

dbfEDF (Γ, t) =
∑
τi∈Γ

⌊
t

pi

⌋
ei (3)

dbfRM (Γ, t, τi) = ei +
∑

τk∈HP (τi)

⌈
t

pk

⌉
ek (4)

where HP (τi) is the set of higher-priority tasks than τi ∈ Γ.
With the resource demand bound functions and resource

supply bound functions, the schedulability test under EDF and
RM scheduling policies can be represented as follows:

Lemma 6: (Theorem 4.1 in [1]) Given Γ = {τ1, ..., τn} and
a periodic resource is R, the task set Γ is schedulable under
EDF if and only if

∀t : 0 < t ≤ LCMΓ : dbfEDF (Γ, t) ≤ sbfR(t) (5)

where LCMΓ is the least common multiple of pi of all τi ∈ Γ.
Lemma 7: (Theorem 4.2 in [1]) Given Γ = {τ1, ..., τn} and

a periodic resource R, the task set is schedulable under RM
if and only if

∀τi ∈ Γ, ∃ti ∈ [0, pi] : dbfRM (Γ, ti, τi) ≤ sbfR(ti) (6)

It is not difficult to see that both the schedulability tests are
in continuous time domain, hence, they are only of theoretic
value and can not be directly applied as schedulability tests in
practice.

B. Discrete Time Domain Schedulability Tests

In this subsection, we give corresponding discrete time
domain schedulability tests.

1) Schedulability Test under EDF:
Lemma 8: Given Γ = {τ1, ..., τn} and a periodic resource

R, the task set Γ is schedulable under EDF if and only if :

∀t ∈ Ω : dbfEDF (Γ, t) ≤ sbfR(t) (7)

where Ω is a time point set defined in formula (8) and sorted
in ascending order:

Ω =

n⋃
j=1

Φj ,Φj = {1, 2, ...,LCMΓ/pj} (8)

where LCMΓ is the least common multiplier of all pi with
τi ∈ Γ.

Proof: We prove this Lemma by proving formula (7) ↔
(6).

We first prove formula (7) → (6) and we prove by contra-
diction.

Suppose that formula (7) → (6) does not hold, i.e.,

∀t ∈ Ω, dbfEDF (Γ, t) ≤ sbfR(t)

but,

∃t′, 0 < t′ < LCMΓ, dbfEDF (Γ, t′) > sbfR(t′)

Without loss of generality, we further assume ti < t′ < ti+1,
where ti and ti+1 are consecutive points in Ω.

As both demand and supply bound functions are non-
decreasing functions [17], hence, we have

sbfEDF (t′) ≥ sbfEDF (ti) (9)

and,

dbfEDF (Γ, t′) ≥ dbfEDF (Γ, ti) (10)

Based on the assumptions, we have:

dbfEDF (Γ, ti) ≤ sbfEDF (ti) (11)

and,

dbfEDF (Γ, t′) > sbfEDF (t′) (12)

From formula (9) and formula (11), we have

sbfEDF (t′) ≥ sbfEDF (ti) ≥ dbfEDF (Γ, ti) (13)

Since demand bound function dbfEDF (Γ, t) is a step function
and the value is only changed at t ∈ Ω, we have

dbfEDF (Γ, t′) = dbfEDF (Γ, ti) (14)



From formula (13) and formula (14), we have

sbfEDF (t′) ≥ dbfEDF (Γ, t′) (15)

which contradicts the assumption of formula (11).
Now we prove formula (6) → (7). This proof is straight-

forward. Since Ω ⊆ [0, LCMΓ], formula (6) → (7) holds.
2) Schedulability Test under RM:
Lemma 9: Given a task set Γ = {τ1, ..., τn} and a periodic

resource R, the task set is schedulable under RM if and only
if

∀τi ∈ Γ,∃t0 ∈ Ωi : dbfRM (Γ, t0, τi) ≤ sbfR(t0) (16)

Ωi is a time point set defined in formula (17):

Ωi =
⋃

∀τk∈HP(τi)

Φτk ,Φτk = {1, 2, ..., b(pi/pk)c} (17)

where HP(τi) is a task set which contains the tasks has higher
priority than τi under RM scheduling policy.

Proof: We prove this Lemma by proving formula (7) ↔
(16).

We first prove formula (7) → (16).
According to the definition of demand bound function

dbfRM (Γ, t, τi), i.e. formula (4), it is a staircase function and
only rises at the time instants t∗ + ε, where t∗ ∈ Ωi and ε is
very small and could be closed to 0. In addition, the supply
bound function sbfR(t) is non-decreasing, hence, we have:

∃t0 ∈ Ωi :dbfRM (Γ, t0, τi)− sbfR(t0)

= min{dbfRM (Γ, t, τi)− sbfR(t)|0 ≤ t ≤ pi}
(18)

Hence, if

∃ti ∈ [0, pi] : dbfRM (Γ, ti, τi) ≤ sbfR(ti)

then

dbfRM (Γ, t0, τi)−sbfR(t0) ≤ dbfRM (Γ, ti, τi)−sbfR(ti) ≤ 0

therefore, we have:

∃t0 ∈ Ωi : dbfRM (Γ, t0, τi) ≤ sbfR(t0)

We now prove formula (16) → (7).
This proof is straightforward, since Ωi ⊆ [0, pi], formu-

la (16) → (7) holds.

VI. EXPERIMENTS

In this section, we empirically study the behaviors of
periodic resources integration.

The first experiment illustrates how the capacity of integrat-
ed periodic resource varies under different periodic resource
set. In order to observe the variation of integrated periodic
resource, we integrate two periodic resources (R1, R2) un-
der different scenarios. For each periodic resource, we set
nine different capacities ranging from 0.1 to 0.9. Hence,
we have total 81 combinations for two periodic resources

under different capacities. For each combination, we randomly
generate 100 pair of periodic resources which do not have
fixed patterns. Fig. 1 shows the variations of average integrated
periodic resource capacity. X-axis represents the capacity of
periodic resource R2 and Y-axis represents the capacity of
the integrated periodic resource. Each curve represents the
variation of the capacity of integrated periodic resource that
integrated by a fixed capacity periodic resource R1 and R2

which has changing capacity.
As indicated by Fig. 1, in general, the integrated resource

has larger the capacity than each of composing periodic
resource. However, integration of periodic resources with
different capacities have different impact on the capacity
of integrated periodic resource. For instance, two periodic
resources with both capacities equal to 0.1 produce a integrated
periodic resource with capacity 0.19, which is almost equal to
the summation of the two individual resources. However, two
periodic resources with both capacities equal to 0.9 produce
a integrated periodic resource with capacity 0.99. About 90%
of the periodic resource’s capacity is wasted. This observation
brings an interesting question: what type of period resources
shall be integrated together to result in the most benefit?

Fig. 1. The capacity of the integrated resource

To get an insight about the question, we first need to
understand what is the benefit. We first define “benefit” as
capacity increase ratio ρ as:

ρ(I(R1, R2) =
C(I(R1, R2))−max(C(R1), C(R2))

max(C(R1), C(R2))
(19)

Fig. 2 depicts the integrated periodic resources’ capacity
increase ratio. There is a very interesting observation that if
one periodic resource integrates with another periodic resource
that has the same capacity, the integrated periodic resource
always has the highest capacity increase ratio. Furthermore,
the closer the two periodic resources’ capacities are, the higher
the increase ratio.

From the previous observations, it is not difficult to see that
the integration causes waste of periodic resources’ capacities.
Hence, we are also interested in knowing how integration
causes waste. We measure waste as the overhead of an
integration, which is defined as:

O(I(R1, R2)) =
(C(R1) + C(R2))− C(I(R1, R2))

C(R1) + C(R2)
(20)



Fig. 2. The capacity increase ratio of the integrated resource

Fig. 3. Overhead of the integrated resource

Fig. 3 depicts the overhead. It clearly indicates that in-
tegrating small capacity periodic resource has lower waste
ratio compared with resources with large capacities. Hence,
we should avoid integrating large capacity periodic resources.

Till now, our experiments are mainly focusing on integrating
two periodic resources. Next, we investigate the properties of
periodic resource integration by integrating more than two
resources. In this set of experiments, we fix the periodic
resource set’s total capacity, and then change the number of
periodic resources. For each number, we randomly distribute
the resource set’s total capacity to each periodic resource.
For each periodic resource set’s total utilization and each
number of periodic resources in the resource set, we repeat
the experiment 50 times. Fig. 4 shows the average value of
the results. The X-axis represents the total capacity for each
periodic resource set and Y-axis represents the capacity of
integrated periodic resource.

As shown in Fig.4, the resource integrated by two periodic
resources has higher capacity compared with the resource
integrated by three periodic resources. This is because the
overlap situation between periodic resources happens more
frequent when the number of periodic resources increases and
hence makes the overhead larger.

VII. CONCLUSION

In this paper, we address the issue of scheduling a periodic
task set on a set of periodic resources. We first transform a
set of periodic resources into an equivalent single periodic

Fig. 4. Average utilization rate of integrated resources

resources and then apply extended schedulability test of mul-
tiple tasks on a single periodic resources. We also investigate
the properties of periodic resource integration process and
provide theoretic analysis for integrated periodic resource
capacity. More specifically, we give the formal calculation
of integrated periodic resource capacity for mutually prime
periodic resources. In addition, we extend the existing schedu-
lability test for periodic tasks on single periodic resource from
continuous time domain to discrete time domain. We further
experimentally study the behavior and performance of periodic
resource integration. It is worth pointing out that there are
some interesting observations from the experimental results:
1) increasing of the number of periodic resources does not
necessarily increase the integrated resource’s capability; 2)
integration of small capacity periodic resources gains more
benefit compared to the integration of large capacity periodic
resources; and 3) integration of two periodic resources that
have same capacities can maximize benefit.

Our future work is to take the task migration overhead
into consideration and implement the proposed algorithm on
the real virtualization platform, such as XEN, to utilize the
resources of different virtual machines. Also, we plan to
implement the proposed ideas on the Cloud platform in order
to meet the requirement while taking minimum cost [18].

REFERENCES

[1] I. Shin and I. Lee, “Compositional real-time scheduling framework with
periodic model,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 7, no. 3, p. 30, 2008.

[2] S. Shirero, M. Takashi, and H. Kei, “On the schedulability conditions on
partial time slots,” in Real-Time Computing Systems and Applications,
1999. RTCSA’99. Sixth International Conference on. IEEE, 1999, pp.
166–173.

[3] A. K. Mok and X. Alex, “Towards compositionality in real-time re-
source partitioning based on regularity bounds,” in Real-Time Systems
Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE. IEEE, 2001,
pp. 129–138.

[4] A. K. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in Real-Time Technology and Applications Symposium, 2001.
Proceedings. Seventh IEEE. IEEE, 2001, pp. 75–84.

[5] Y. Li, A. M. Cheng, and A. K. Mok, “Regularity-based partitioning
of uniform resources in real-time systems,” in Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2012 IEEE 18th
International Conference on. IEEE, 2012, pp. 368–377.

[6] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky,
“Realizing compositional scheduling through virtualization,” in Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2012 IEEE 18th. IEEE, 2012, pp. 13–22.



Fig. 5. Resource Integration

[7] W. Chu, “A study of asynchronous time division multiplexing for time-
sharing computer systems,” in Proceedings of the November 18-20,
1969, fall joint computer conference. ACM, 1969, pp. 669–678.

[8] N. Fisher and F. Dewan, “Approximate bandwidth allocation for com-
positional real-time systems,” in Real-Time Systems, 2009. ECRTS’09.
21st Euromicro Conference on. IEEE, 2009, pp. 87–96.

[9] F. Dewan and N. Fisher, “Approximate bandwidth allocation for fixed-
priority-scheduled periodic resources,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010 16th IEEE.
IEEE, 2010, pp. 247–256.

[10] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Real-Time Systems Symposium, 2003. RTSS 2003. 24th
IEEE. IEEE, 2003, pp. 2–13.

[11] Xiayu Hua, Hao Wu, Zheng Li and S. Ren, “Scheduling periodic
tasks on multiple periodic resources,” in Advanced Communications and
Computation, 2014. The 4th International Conference on. IARIA, 2014,
pp. 2–13.

[12] S. Baruah, J. Goossens, and G. Lipari, “Implementing constant-
bandwidth servers upon multiprocessor platforms,” in Real-Time and
Embedded Technology and Applications Symposium, 2002. Proceedings.
Eighth IEEE, 2002, pp. 154–163.

[13] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[14] J. Strosnider, J. Lehoczky, and L. Sha, “The deferrable server algorithm
for enhanced aperiodic responsiveness in hard real-time environments,”
Computers, IEEE Transactions on, vol. 44, no. 1, pp. 73–91, Jan 1995.

[15] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some practical
problems in prioritized preemptive scheduling.” in RTSS, 1986, pp. 181–
191.

[16] X. Feng and A. K. Mok, “A model of hierarchical real-time virtual
resources,” in Real-Time Systems Symposium, 2002. RTSS 2002. 23rd
IEEE. IEEE, 2002, pp. 26–35.

[17] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE Interna-
tional, 2004, pp. 57–67.

[18] Hao Wu, Xiayu Hua, Zheng Li and Shangping Ren, “Resource min-
imization for real-time applications using computer clouds,” in 6th
IEEE/ACM International Conference on Utility and Cloud Computing,
2013, pp. 99–106.

APPENDIX A
PROOF OF LEMMA 5

Proof:
To calculate the integrated resources for two synchronized

periodic continues resources, we calculate each integration
within each instance of R1, and then add them together to
get the final integrated resources within one hyperperiod.
Fig. 5 dispatches the two resources within time interval
[kπ1, (k+1)π1], where k is the kth instance of R1 within one
hyperperiod. We partition the time interval into three parts, i.e.,
head, body and tail. The head part is from the beginning to
the end of θ1. The tail part is from the release time of the last
instance of R2 to (k + 1)π1. The body is the time interval

between head and tail. In order to calculate the integrated
resource within one period of R1, we need to calculate all
three parts.

Head:
The integrated resource in the head is trivial, which is θ1.

θ′head = θ1 (21)

Tail:
The length of the tail is (k+ 1)π1modπ2. Let tailk = (k+

1)π1modπ2. We first calculate the resources that R1 has within
the tail part. There are two cases needs to be considered: θ1

is ended within the tail part or before the tail part. Notation
θtail1 to denote the resources R1 within the tail part. Then we
can get the following:

θtail1 = max{θ1 − (π1 − tailk), 0} (22)

We then calculate the resources R2 has within the tail part.
There are also two cases need to be considered: θ2 ends
within the tail part or exceeds the tail part. Denote θtail2 as
the resources R2 has within the tail part. Then we can get:

θtail2 = min{θ2, tailk} (23)

Since the whole θ1 is calculated as head, we need to avoid
over calculating θ1 if it ends within the tail part. Hence, the
integrated resource of the tail part after integration can be
calculated as follow:

θ′tail = max{θtail2 − θtail1 , 0} (24)

Body:
We calculate the body part from the end point of the body

part and subtract the empty slots within the body. Since the
end of the body is π1 − tailk, there are k′ = bπ1−θ1−tailk

π2
c

entire R2 instances within the body. Hence, we have k′θ2 time
slots available from R2.

For the first R2 instance that within the body, i.e. the
third R2 instance in Fig. 5, there are two cases need to be
considered. Case 1, θ1 is ended at the middle of θ2 of the first
R2 instance within the body part. The example shown in Fig. 5
falls into case 1. Case 2, θ1 ends within the time interval of the
first R2 instance within the body part that doesn’t provide any
resources, i.e. in Fig. 5, if θ1 ends between the end point of
the third θ2 and the beginning point of the fourth R2 instance.
The resources that the first Rc2 instance within the body can
be calculated as:

θbody2 = max{0, π1 − tailk − (k′ + 1)π2 + θ2 − θ1} (25)

Note that, if the θ1 ends within the tail part, there is no
body part. And under such condition, k′ < 0 and θbody2 < 0.
Hence, the calculation of the body part is as follow:

θ′body = max{k′θ2 + θbody2 , 0} (26)

Combine equations (21), (26) and (24), we can get the
integrated resources within any R1 instance within the hy-
perperiod. Since within one hyperperiod, there are π′/π1 R1

instances, add all the integrated resources for each R1 instance,
we can easily get equation 1.


